Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in . A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to , but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of in . Additionally, heme plays an indispensable role in the life cycle of , which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid β-oxidation, autophagy, and virulence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11120706 | PMC |
http://dx.doi.org/10.3390/ijms25105268 | DOI Listing |
Dev Cell
December 2024
Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150081, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin 150080, China. Electronic address:
Advanced atherosclerosis is the pathological basis for acute cardiovascular events, with significant residual risk of recurrent clinical events despite contemporary treatment. The death of foamy macrophages is a main contributor to plaque progression, but the underlying mechanisms remain unclear. Bulk and single-cell RNA sequencing demonstrated that massive iron accumulation in advanced atherosclerosis promoted foamy macrophage ferroptosis, particularly in low expression of triggering receptor expressed on myeloid cells 2 (TREM2) foamy macrophages.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.
Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA. Electronic address:
Hemoglobin and myoglobin are known to undergo autoxidation, in which the oxyferrous form of the heme is oxidized to the ferric state by O. Dehaloperoxidase-A (DHP-A), a multifunctional catalytic hemoglobin from Amphitrite ornata is an exception and is observed to undergo the reverse process, during which the ferric heme is spontaneously reduced to the oxyferrous form under aerobic conditions. The high reduction potential of DHP (+202 mV at pH 7.
View Article and Find Full Text PDFScand J Clin Lab Invest
December 2024
Department of Cardiothoracic Surgery, Anaesthesia, Perfusion, and Intensive Care, Skåne University Hospital, Lund, Sweden.
Haemolysis occurring during cardiac surgery with cardiopulmonary bypass (CPB) is assumed to be a risk factor for postoperative acute kidney injury (AKI). Plasma alpha-1 microglobulin (A1M) may have a protective role as haem scavenger. The aim of this study was to evaluate the association between AKI and the degree of haemolysis and the course of A1M concentrations during cardiac surgery, respectively.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic , primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by ) in HUS has not yet been investigated. We hypothesized that HO-1 also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!