Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, K1.3, and K3.1 channels, which play pivotal roles in immune cell activation and proliferation. Using electrophysiological techniques, we demonstrated the inhibitory effects of nootkatone on CRAC, K1.3, and K3.1 channels in HEK293T cells overexpressing respective channel proteins. Nootkatone exhibited dose-dependent inhibition of channel currents, with IC values determined for each channel. Nootkatone treatment did not significantly affect cell viability, indicating its potential safety for therapeutic applications. Furthermore, we observed that nootkatone treatment attenuated calcium influx through activated CRAC channels and showed anti-proliferative effects, suggesting its role in regulating inflammatory T cell activation. These findings highlight the potential of nootkatone as a natural compound for modulating calcium signaling pathways by targeting related key ion channels and it holds promise as a novel therapeutic agent for inflammatory disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11121628 | PMC |
http://dx.doi.org/10.3390/ijms25105240 | DOI Listing |
Alzheimers Dement
December 2024
Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
Background: Mitochondrial reactive oxygen species (mROS), such as superoxide and hydrogen peroxide (HO), are implicated in aging-associated neurological disorders, including Alzheimer's Disease and frontotemporal dementia. Mitochondrial complex III of the respiratory chain has the highest capacity for mROS production and generates mROS toward the cytosol, poising it to regulate intracellular signaling and disease mechanisms. However, the exact triggers of complex III-derived ROS (CIII-ROS), its downstream molecular targets, and its functional roles in dementia-related pathogenesis remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
San Francisco VA Medical Center, University of California San Francisco, San Francisco, CA, USA.
Background: Effective disease-modifying regimens for Alzheimer's Disease (AD) remain lacking due to insufficient understanding of its pathogenic drivers. It was shown previously that upregulation of the calcium-sensing receptor (CaSR), an excitatory family C GPCR, induces neurodegeneration by interfering with the inhibitory γ-aminobutyric acid (GABA) signaling following acute brain injuries (Ann_Clin_Transl_Neurol, 1:851-66). Herein, we determined whether CaSR overexpression is causally associated with the AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA.
Background: Altered liver function and dysregulated metabolism are emerging risk factors for Alzheimer's disease (AD). This includes genetic variation in apolipoprotein E (APOE), which is the strongest genetic risk determinant for AD. APOE is highly secreted by hepatocytes in the liver and astrocytes in the brain and plays a significant role in lipid homeostasis and metabolic function.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China.
Introduction: Ischemic stroke greatly threatens human life and health. Neuro-restoration is considered to be the critical points in reestablishing neurological function and improving the quality of life of patients. Catalpol is the main active ingredient of the Chinese herbal medicine , which has the beneficial efficacy in traditional remedy, is closely related to the mitochondrial morphology and function.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!