Cereal grains and pulses are staple foods worldwide, being the primary supply of energy, protein, and fiber in human diets. The current practice of milling and fractionation yields large quantities of byproducts and waste, which are largely downgraded and end up as animal feeds or fertilizers. This adversely affects food security and the environment, and definitely implies an urgent need for a sustainable grain processing system to rectify the current issues, particularly the management of waste and excessive use of water and energy. The current review intends to discuss the limitations and flaws of the existing practice of grain milling and fractionation, along with potential solutions to make it more sustainable, with an emphasis on wheat and peas as common fractionation crops. This review discusses a proposed sustainable grain processing system for the fractionation of wheat or peas into flour, protein, starch, and value-added components. The proposed system is a hybrid model that combines dry and wet fractionation processes in conjunction with the implementation of three principles, namely, integration, recycling, and upcycling, to improve component separation efficiency and value addition and minimize grain milling waste. The three principles are critical in making grain processing more efficient in terms of the management of waste and resources. Overall, this review provides potential solutions for how to make the grain processing system more sustainable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11121700 | PMC |
http://dx.doi.org/10.3390/foods13101532 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!