Variations in Cold Resistance and Contents of Bioactive Compounds among Kimura et Migo Strains.

Foods

Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Science, China Jiliang University, Hangzhou 310018, China.

Published: May 2024

is a valuable traditional Chinese herbal plant that is both medicinal and edible. However, the yield of wild is limited. Adverse stress affects the growth, development, and yield of plants, among which low temperature is the primary limiting factor for introducing to high-latitude areas and expanding the planting area. Therefore, this study aims to explore the variations in growth ability, cold resistance, and contents of bioactive compounds among different strains. Four strains of were selected as experimental materials and were subjected to low-temperature stress (4 °C). The agronomic traits, physiological indices, as well as the expressions of cold resistance-related genes (, , , and ) in the roots and leaves of , were determined. The contents of bioactive compounds, including polysaccharides, flavonoids, and phenols were also measured. Compared with the other strains, Xianju had the highest seed germination and transplantation-related survival rates. Under low-temperature stress, Xianju exhibited the strongest cold resistance ability, as revealed by the changes in water contents, chlorophyll levels, electrical conductivities, enzyme activities, and expressions of the cold resistance-related genes. Additionally, the polysaccharide content of Xianju increased the most, while the stem flavonoid and leaf phenol contents were elevated in all four strains under cold treatment. Therefore, selecting excellent performing strains is expected to expand the planting area, improve the yield, and increase the economic benefits of in high latitude areas with lower temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119086PMC
http://dx.doi.org/10.3390/foods13101467DOI Listing

Publication Analysis

Top Keywords

cold resistance
12
contents bioactive
12
bioactive compounds
12
resistance contents
8
planting area
8
low-temperature stress
8
expressions cold
8
cold resistance-related
8
resistance-related genes
8
strains
6

Similar Publications

The Gene Enhances the Cold Resistance of .

Plants (Basel)

January 2025

College of Life Sciences, Shihezi University, Shihezi 832000, China.

Plants have large amounts of the late embryogenesis abundant protein (LEA) family of proteins, which is involved in osmotic regulation. The Korla Pear () is an uncommon pear species that thrives in Xinjiang and can survive below-freezing conditions. We found that the gene was more expressed after cold treatment by looking at the transcriptome data of the Korla Pear.

View Article and Find Full Text PDF

Study of the Influence of Desert Sand-Mineral Admixture on the Abrasion Resistance of Concrete.

Materials (Basel)

January 2025

College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China.

The incorporation of desert sand-mineral admixture improves the abrasion resistance of concrete. To prolong the service life of assembled concrete channels and mitigate the depletion of river sand resources, the effects of fly ash (FA), silica fume (SF), desert sand (DS), and basalt fiber (BF) on the mechanical properties and the abrasion resistance of concrete were examined, alongside an analysis of their microstructures to elucidate the underlying mechanisms of influence. The results indicated that the abrasion resistance strength of concrete mixed with 10% FA and 0.

View Article and Find Full Text PDF

In this study, we investigated the effect of spray angle on the microstructure, bonding quality, and scratch resistance of cold-sprayed SS316L coatings on SS304 substrates. The coatings were deposited at spray angles of 45°, 60°, 75°, and 90° using a high-pressure cold spray system. A comprehensive analysis of the relationship between the spray angle and coating properties was conducted, with a particular focus on fracture toughness and porosity.

View Article and Find Full Text PDF

Effect of Plasma Treatment on Coating Adhesion and Tensile Strength in Uncoated and Coated Rubber Under Aging.

Materials (Basel)

January 2025

Mechanical Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain.

The degradation of rubber materials under environmental and mechanical stress presents a significant challenge, particularly due to UV (ultraviolet light) exposure, which severely impacts the material's physical properties. This study aims to enhance the UV stability and longevity of rubber by evaluating the performance of modified polyurethane and silicone coatings as protective stabilizers. Natural rubber-styrene-butadiene rubber (NR-SBR), known for its exceptional mechanical properties, was selected as the base material.

View Article and Find Full Text PDF

Effect of Gradient Transition Layer on the Cracking Behavior of Ni60B (NiCrBSi) Coatings by Laser Cladding.

Materials (Basel)

January 2025

State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.

Laser cladding technology is an effective method for producing wear-resistant coatings on damaged substrates, improving both wear and corrosion resistance, which extends the service life of components. However, the fabrication of hard and brittle materials is highly susceptible to the problem of cracking. Using gradient transition layers is an effective strategy to mitigate the challenge of achieving crack-free laser-melted wear-resistant coatings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!