Oxidative stress increases the apoptosis of intestinal epithelial cells and impairs intestinal epithelial cell renewal, which further promotes intestinal barrier dysfunction and even death. Extensive evidence supports that resveratrol and apigenin have antioxidant, anti-inflammatory, and antiproliferative properties. Here, we investigated the ability of these two compounds to alleviate diquat-induced jejunal oxidative stress and morphological injury, using the duck as a model, as well as the effects of apigenin on oxidative stress induced by HO in immortalized duck intestinal epithelial cells (IDECs). Ducks were randomly assigned to the following four groups, with five replicates: a control (CON) group, a diquat-challenged (DIQ) group, a resveratrol (500 mg/kg) + diquat (RES) group, and an apigenin (500 mg/kg) + diquat (API) group. We found that serum catalase (CAT) activity and total antioxidant capacity (T-AOC) markedly reduced in the RES and API groups as compared to the DIQ group ( < 0.05); moreover, serum S superoxide dismutase (SOD) levels increased significantly in the API group as compared to the DIQ group ( < 0.05). In jejunal mucosa, the malondialdehyde (MDA) content in the RES and API groups decreased more than that in the DIQ group ( < 0.05). In addition, the jejunal expression levels of the and genes in the RES and API groups increased notably compared with those in the DIQ group ( < 0.05); meanwhile, CAT activity in the RES and API groups was markedly elevated compared with that in the CON group ( < 0.05). In IDECs, apigenin significantly restrained the HO-mediated increase in MDA content and decrease in CAT levels ( < 0.05). Furthermore, apigenin increased the protein expression of p-NRF2, NRF2, p-AKT, and p-P38; downregulated that of cleaved caspase-3 and cleaved caspase-9; and reduced the ratio of Bax/Bcl-2 in HO-treated IDECs ( < 0.05). In conclusion, resveratrol and apigenin can be used as natural feed additives to protect against jejunal oxidative stress in ducks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117746PMC
http://dx.doi.org/10.3390/antiox13050611DOI Listing

Publication Analysis

Top Keywords

diq group
20
group 005
20
intestinal epithelial
16
oxidative stress
16
res api
16
api groups
16
resveratrol apigenin
12
jejunal oxidative
12
epithelial cells
12
compared diq
12

Similar Publications

Oxidative stress increases the apoptosis of intestinal epithelial cells and impairs intestinal epithelial cell renewal, which further promotes intestinal barrier dysfunction and even death. Extensive evidence supports that resveratrol and apigenin have antioxidant, anti-inflammatory, and antiproliferative properties. Here, we investigated the ability of these two compounds to alleviate diquat-induced jejunal oxidative stress and morphological injury, using the duck as a model, as well as the effects of apigenin on oxidative stress induced by HO in immortalized duck intestinal epithelial cells (IDECs).

View Article and Find Full Text PDF

Background: Performance assessment of positron emission tomography (PET) scanners is crucial to guide clinical practice with efficiency. We have already introduced and experimentally evaluated a simulation method allowing the creation of a controlled ground truth for system performance assessment. In the current study, the goal was to validate the method using patient data and demonstrate its relevance to assess PET performances accuracy in clinical conditions.

View Article and Find Full Text PDF

This experiment was conducted to investigate the effects of magnolol on the oxidative parameters and jejunum injury induced by diquat in broiler chickens. This test adopts a 2 × 2 factors design, a total of 288 one-day-old male AA broiler chicks randomly allocated to four groups, consisting of six replicates of 12 birds each, which was then denoted as CON group, diquat (DIQ) group (16 mg/kg BW diquat was injected into birds at the age of 21 days), magnolol (MAG) group (basic bird diet supplemented with 300 mg/kg magnolol), and MAG + DIQ group. At 21 days of age, broilers in the DIQ group and the MAG + DIQ group were intraperitoneally injected with 16 mg/kg BW diquat.

View Article and Find Full Text PDF

The ability to synthetically tune the ligand frameworks of redox-active molecules is of critical importance to the economy of solar fuels because manipulating their redox properties can afford control over the operating potentials of sustained electrocatalytic or photoelectrocatalytic processes. The electronic and steric properties of 2,2':6',2″-terpyridine (Terpy) ligand frameworks can be tuned by functional group substitution on ligand backbones, and these correlate strongly to their Hammett parameters. The synthesis of a new series of tridentate meridional ligands of 2,4,6-trisubstituted pyridines that engineers the ability to finely tune the redox potentials of cobalt complexes to more positive potentials than that of their Terpy analogs is achieved by aryl-functionalizing at the four-position and by including isoquinoline at the two- and six-positions of pyridine (Aryl-DiQ).

View Article and Find Full Text PDF

The present study aimed to quantify and compare in situ the primary and secondary physiological stress responses, related to the changing operations of floating net cages, in both subadult (523 days post hatching [dph]) and adult (916 dph) European sea bass Dicentrarchus labrax under intensive farming conditions in the Moroccan M'diq Bay. The blood levels of cortisol, glucose, total cholesterol, total protein, and lactate, as well as the percentage of haematocrit, were measured before and after this operation. The results showed significantly elevated levels of cortisol and blood glucose in both age groups, whereas total cholesterol and protein levels were unaffected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!