Soil is an environment with numerous niches, where bacteria are exposed to diverse conditions. Some bacteria are exposed earlier than others to pressure, and the emission of signals that other bacteria can receive and perceive may allow a better response to an eminent stimulus. To shed light on how bacteria trigger their response and adapt to changes in the environment, the intra- and interspecific influences of volatiles on bacterial strains growing under non-stressed and cadmium-stressed conditions were assessed. Each strain was exposed to its volatiles emitted by cells growing under different conditions to test whether the environment in which a cell grows influences neighboring cells. The five genera tested showed different responses, with displaying the greatest influence. In a second experiment, 13 strains from different genera were grown under control conditions but exposed to volatiles released by Cd-stressed cells to ascertain whether 's observed influence was strain-specific or broader. Our results showed that the volatiles emitted by some bacteria under stress are differentially perceived and translated into biochemical changes (growth, alteration of the antioxidant response, and oxidative damage) by other bacteria, which may increase the adaptability and resilience of bacterial communities to environmental changes, especially those with a prooxidant nature. Cadmium (Cd) contamination of soils constitutes a risk to the environment and human health. Here, we showed the effects of Cd exposure on bacteria and how volatile communication influences the biochemistry related to coping with oxidative stress. This knowledge can be important for remediation and risk assessment and highlights that new biological features, such as volatile communication, should be considered when studying and assessing the impact of contaminants on soil ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118407PMC
http://dx.doi.org/10.3390/antiox13050565DOI Listing

Publication Analysis

Top Keywords

volatile communication
12
bacteria
8
oxidative stress
8
differentially perceived
8
bacteria exposed
8
exposed volatiles
8
volatiles emitted
8
bacteria cope
4
cope oxidative
4
stress induced
4

Similar Publications

Current work environments, driven by globalization, demographic changes, and digitalization, demand substantial adaptation, which leads to decreased employee well-being. While occupational psychology research has identified supportive mechanisms, it often lacks a deepened understanding of how interventions function. This study aims to analyze the impacts of VUCA contexts and leadership behavior on job crafting, focusing on white-collar workers.

View Article and Find Full Text PDF

Plants emit green leaf volatiles (GLVs) in response to biotic and abiotic stress. Receiver plants perceive GLVs as alarm cues resulting in activation of defensive or protective mechanisms. While this is well documented, it is not known how GLVs are perceived by receiver cells and what the structural determinants are for GLV activity.

View Article and Find Full Text PDF

The GacS/GacA two-component system strongly regulates antimicrobial competition mechanisms of MFE01 strain.

J Bacteriol

January 2025

Laboratoire de Communication Bactérienne et Stratégies Anti-infectieuses (CBSA UR4312, formerly LMSM EA4312), Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France.

Unlabelled: MFE01 is an environmental bacterium characterized by an hyperactive type 6 secretion system (T6SS) and a strong emission of volatile organic compounds (VOCs). In a previous study, a transposition mutant, 3H5, exhibited an inactive T6SS and altered VOC emission. In 3H5, the interruption of gene by the transposon was insufficient to explain these phenotypes.

View Article and Find Full Text PDF

Ethylene-Mediated Production and Emission of Limonene Influence Brown Planthopper Preference for Rice Plants.

J Agric Food Chem

January 2025

Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Volatile organic compounds (VOCs) play a key role in plant communication with other organisms in the natural environment. However, the regulatory role of the phytohormone ethylene in volatile production in plants remains unclear. In this study, we demonstrated that the application of an ethylene precursor and amplification of ethylene signaling make rice plants more attractive to brown planthopper (BPH) females for feeding and oviposition.

View Article and Find Full Text PDF

Volatile oils (VOs), synonymously termed essential oils (EOs), are highly hydrophobic liquids obtained from aromatic plants, containing diverse organic compounds for example terpenes and terpenoids. These oils exhibit significant neuroprotective properties, containing antioxidant, anti-inflammatory, anti-apoptotic, glutamate activation, cholinesterase inhibitory action, and anti-protein aggregatory action, making them potential therapeutic agents in managing neurodegenerative diseases (NDs). VOs regulate glutamate activation, enhance synaptic plasticity, and inhibit oxidative stress through the stimulation of antioxidant enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!