Rotenone is a pesticide used in research for its ability to induce changes similar, in vivo and in vitro, to those observed in Parkinson's disease (PD). This includes a selective death of dopaminergic neurons in the substantia nigra. Nonetheless, the precise mechanism through which rotenone modifies structure and function of neurons remains unclear. The PC12 cells closely resemble dopamine terminal neurons. This makes it a preferred model for studying the morphology of central dopamine neurons and predicting neurotoxicity. In this paper, we investigated the effects of 0.5 µM rotenone for 24-48 h on PC12 cell viability and ultrastructure (TEM), trying to identify primary and more evident alterations that can be related to neuronal damages similar to that seen in animal PD models. Cell viability decreased after 24 h rotenone treatment, with a further decrease after 48 h. Ultrastructural changes included vacuolar degeneration, mitochondrial mild swelling, decrease in the number of neuropeptide granules, and the loss of cell-to-cell adhesion. These findings are in agreement with previous research suggesting that rotenone, by inhibiting energy production and increasing ROS generation, is responsible for significant alterations of the ultrastructure and cell death of PC12 cells. Our data confirm the link between rotenone exposure, neuronal damage, and changes in dopamine metabolism, suggesting its role in the pathogenesis of PD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119447 | PMC |
http://dx.doi.org/10.3390/brainsci14050476 | DOI Listing |
Front Plant Sci
December 2024
LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal.
Wheat is an essential staple food, and its production and grain quality are affected by extreme temperature events. These effects are even more relevant considering the increasing food demand for a growing world population and the predicted augmented frequency of heat waves. This study investigated the impact of simulated heat wave (HW) conditions imposed during grain filling on starch granule characteristics, endosperm ultrastructure, and transcriptomic modulation of genes involved in starch synthesis and degradation.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, China; Department of gastroenterology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, China. Electronic address:
Chronic obstructive pulmonary disease (COPD) is a systemic inflammatory disease impacting both the respiratory and gastrointestinal systems, with its pathogenesis closely linked to the lung-gut axis theory. In this study, we established a rat model of COPD using a fumigation method combined with intra-airway administration of lipopolysaccharide (LPS) to investigate the effects of lactulose on lung and intestinal tissues, focusing on related inflammatory markers and the TLR4/NF-κB signaling pathway. We further explored the therapeutic effects and mechanisms of lactulose on the lung-intestinal tissues in COPD rats, aiming to expand its potential application in chronic respiratory diseases.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Beijing Institute of Radiation Medicine, Beijing, 100850, China.
Background: Radiation-induced heart disease (RIHD) is one of the most serious complications of radiation therapy (RT) for thoracic tumors, and new interventions are needed for its prevention and treatment. Small extracellular vesicles (sEVs) from stem cells have attracted much attention due to their ability to repair injury. However, the role of umbilical cord mesenchymal stem cell (UCMSC)-derived sEVs in protecting cardiac organoids from radiation-induced injury and the underlying mechanisms are largely unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles.
View Article and Find Full Text PDFPLoS One
December 2024
Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
Introduction: The aging process is intricately linked to alterations in cellular and tissue structures, with the respiratory system being particularly susceptible to age-related changes. Therefore, this study aimed to profile the activity of proteases using activity-based probes in lung tissues of old and young rats, focusing on the expression levels of different, in particular cathepsins G and X and matrix Metalloproteinases (MMPs). Additionally, the impact on extracellular matrix (ECM) components, particularly fibronectin, in relation to age-related histological and ultrastructural changes in lung tissues was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!