Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Computerized assessments and digital games have become more prevalent in childhood, necessitating a systematic investigation of the effects of gamified executive function assessments on performance and engagement. This study examined the feasibility of incorporating gamification and a machine learning algorithm that adapts task difficulty to individual children's performance into a traditional executive function task (i.e., Flanker Task) with children ages 3-5. The results demonstrated that performance on a gamified version of the Flanker Task was associated with performance on the traditional version of the task and standardized academic achievement outcomes. Furthermore, gamification grounded in learning science and developmental psychology theories applied to a traditional executive function measure increased children's task enjoyment while preserving psychometric properties of the Flanker Task. Overall, this feasibility study indicates that gamification and adaptive machine learning algorithms can be successfully incorporated into executive function assessments with young children to increase enjoyment and reduce data loss with developmentally appropriate and intentional practices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119088 | PMC |
http://dx.doi.org/10.3390/brainsci14050451 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!