Synthesis of silver nanoparticles with antibacterial properties using a one-pot green approach that harnesses the natural reducing and capping properties of cinnamon () bark extract is presented in this work. Silver nitrate was the sole chemical reagent employed in this process, acting as the precursor salt. Gas Chromatography-Mass Spectroscopy (GC-MS), High-Performance Liquid Chromatography (HPLC) analysis, and some phytochemical tests demonstrated that cinnamaldehyde is the main component in the cinnamon bark extract. The resulting bio-reduced silver nanoparticles underwent comprehensive characterization by Ultraviolet-Vis (UV-Vis) and Fourier Transform InfraRed spectrophotometry (FTIR), Dynamic Light Scattering (DLS), Transmission Electron Microscopy, and Scanning Electron Microscopy suggesting that cinnamaldehyde was chemically oxidated to produce silver nanoparticles. These cinnamon-extract-based silver nanoparticles (AgNPs-cinnamon) displayed diverse morphologies ranging from spherical to prismatic shapes, with sizes spanning between 2.94 and 65.1 nm. Subsequently, the antibacterial efficacy of these nanoparticles was investigated against , , , , and strains. The results suggest the promising potential of silver nanoparticles obtained (AgNPs-cinnamon) as antimicrobial agents, offering a new avenue in the fight against bacterial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117492PMC
http://dx.doi.org/10.3390/bioengineering11050517DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
24
cinnamon bark
12
bark extract
12
antibacterial properties
8
electron microscopy
8
nanoparticles agnps-cinnamon
8
silver
7
nanoparticles
7
synergistic antibacterial
4
properties silver
4

Similar Publications

Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).

View Article and Find Full Text PDF

Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells.

Int J Mol Sci

January 2025

Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.

The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.

View Article and Find Full Text PDF

Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups.

View Article and Find Full Text PDF

Biosorbents have demonstrated considerable potential for the remediation of metals in aqueous environments. An aqueous extract of L. (EiE) and its extract-coated silver nanoparticles have been prepared and employed for the removal of iron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!