Introduction: Chronic wounds caused by diabetes or lower-extremity artery disease are intractable because the wound healing mechanism becomes ineffective due to the poor environment of the wound bed. Biosheets obtained using in-body tissue architecture (iBTA) are collagen-based membranous tissue created within the body and which autologously contain various growth factors and somatic stem cells including SSEA4-posituve cells. When applied to a wound, granulation formation can be promoted and epithelialization may even be achieved. Herein, we report our clinical treatment experience with seven cases of intractable diabetic foot ulcers.
Cases: Seven patients, from 46 to 93 years old, had large foot ulcers including in the heel area, which were failing to heal with standard wound treatment.
Methods: Two or four Biosheet-forming molds were embedded subcutaneously in the chest or abdomen, and after 3 to 6 weeks, the molds were removed. Biosheets that formed inside the mold were obtained and applied directly to the wound surface.
Results: In all cases, there were no problems with the mold's embedding and removal procedures, and Biosheets were formed without any infection or inflammation during the embedding period. The Biosheets were simply applied to the wounds, and in all cases they adhered within one week, did not fall off, and became integrated with the wound surface. Complete wound closure was achieved within 8 weeks in two cases and within 5 months in two cases. One patient was lost due to infective endocarditis from septic colitis. One case required lower leg amputation due to wound recurrence, and one case achieved wound reduction and wound healing in approximately 9 months.
Conclusions: Biosheets obtained via iBTA promoted wound healing and were extremely useful for intractable diabetic foot ulcers involving the heel area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117490 | PMC |
http://dx.doi.org/10.3390/bioengineering11050462 | DOI Listing |
BMJ Open
December 2024
Department of Vascular Surgery, Leids Universitair Medisch Centrum, Leiden, The Netherlands.
Introduction: Foot ulcers are one of the most serious complications of diabetes, leading to significant risks on amputation and mortality. Peripheral arterial disease (PAD) is an important factor for the development and the outcome of diabetic foot ulcers (DFU). Although prompt and accurate detection of PAD is critical to reduce complications, its diagnosis can be challenging with currently used bedside tests (such as ankle-brachial index and toe pressure) due to medial arterial calcification.
View Article and Find Full Text PDFClin Teach
February 2025
Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
Purpose: The development of the Diabetic Wound Assessment Learning Tool (DiWALT) has previously been described. However, an examination of its application to a larger, more heterogeneous group of participants is lacking. In order to allow for a more robust assessment of the psychometric properties of the DiWALT, we applied it to a broader group of participants.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar).
View Article and Find Full Text PDFActa Dermatovenerol Croat
November 2024
Khalid Al Aboud King Faisal Hospital P.O Box 5440, Makkah, Saudi Arabia;
parts of the world (1,2). CL is characterized by significant clinical variability. An ulcerated nodule on the exposed parts of the body (corresponding to the parasite inoculation site by the vector insect) is the classic presentation.
View Article and Find Full Text PDFCureus
December 2024
General Surgery, Father Muller Medical College, Mangalore, IND.
Background Wound healing in diabetic foot ulcers (DFUs) is hindered by several physiological and biochemical abnormalities, including prolonged inflammation, an imbalance in extracellular matrix (ECM) synthesis and degradation, insufficient neovascularization, and reduced macrophage activity. In DFUs, excessive and uncontrolled matrix metalloproteinases (MMPs) degrade the ECM and impede wound healing. Matrix metalloproteinase-9 (MMP-9) concentration plays a key role in inflammation and ECM degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!