To address the limitations of alginate and gelatin as separate hydrogels, partially oxidized alginate, alginate dialdehyde (ADA), is usually combined with gelatin to prepare ADA-GEL hydrogels. These hydrogels offer tunable properties, controllable degradation, and suitable stiffness for 3D bioprinting and tissue engineering applications. Several processing variables affect the final properties of the hydrogel, including degree of oxidation, gelatin content and type of crosslinking agent. In addition, in 3D-printed structures, pore size and the possible addition of a filler to make a hydrogel composite also affect the final physical and biological properties. This study utilized datasets from 13 research papers, encompassing 33 unique combinations of ADA concentration, gelatin concentration, CaCl and microbial transglutaminase (mTG) concentrations (as crosslinkers), pore size, bioactive glass (BG) filler content, and one identified target property of the hydrogels, stiffness, utilizing the Extreme Boost (XGB) machine learning algorithm to create a predictive model for understanding the combined influence of these parameters on hydrogel stiffness. The stiffness of ADA-GEL hydrogels is notably affected by the ADA to GEL ratio, and higher gelatin content for different ADA gel concentrations weakens the scaffold, likely due to the presence of unbound gelatin. Pore size and the inclusion of a BG particulate filler also have a significant impact on stiffness; smaller pore sizes and higher BG content lead to increased stiffness. The optimization of ADA-GEL composition and the inclusion of BG fillers are key determinants to tailor the stiffness of these 3D printed hydrogels, as found by the analysis of the available data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117982 | PMC |
http://dx.doi.org/10.3390/bioengineering11050415 | DOI Listing |
Langmuir
January 2025
Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, United States.
Slip flow, a fluid flow enhanced in comparison to that calculated using continuum equations, has been reported for many nanopores, mostly those with hydrophobic surfaces. We investigated the flow of water, hexane, and methanol through hydrophilic nanopores in silica colloidal crystals. Three silica sphere sizes were used to prepare the crystals: 150 ± 30, 500 ± 40, and 1500 ± 100 nm.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.
Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).
View Article and Find Full Text PDFJ Dent Sci
December 2024
Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan.
Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
The recycling of low-concentration coal-bed methane (CBM) is environmentally beneficial and plays a crucial role in optimizing the energy mix. In this work, we present a strategy involving pore chemical modification to synthesize a series of bimetallic diamond coordination networks, namely CuIn(ina), CuIn(3-ain), and CuIn(3-Fina) (where ina = isonicotinic acid, 3-ain = 3-amino-isonicotinic acid, and 3-Fina = 3-fluoroisonicotinic acid). Among these, the amino-functionalized CuIn(3-ain) exhibits excellent CH adsorption capacity (1.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
The phenomena occurring in a weld seam during advancement of a laser beam over a metallic component are still under dispute. The occurrence and evolution of porosity and the occasional blowout of melt need to be understood. Here, a recently developed X-ray tomoscopy setup is applied, providing one hundred 3D images per second to capture the temporal evolution of the melt pool in an AlSi9Cu3(Fe) die-casting while a laser beam advances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!