Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective To explore the effects of aloperine (Alo) on cigarette smoke-induced injury in human bronchial epithelial cells and its potential mechanism. Methods After human bronchial epithelial 16HBE cells were co-treated by 100 mL/L cigarette smoke extract (CSE) and various concentrations (50,100 and 200 μmol/L) of Alo, cell viability was assessed using CCK-8 assay. Lactate dehydrogenase (LDH) activity was measured with a related kit. Cell apoptosis was evaluated using the terminal-deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) and Western blot analysis. The levels of inflammatory factors were detected by ELISA. Oxidative stress levels were assessed using 2'7'-dichlorofluorescin diacetate (DCFH-DA) staining. The expression of Toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) signaling-associated proteins was measured by Western blot analysis. After cells were co-treated with 100 mL/L CSE and 200 μmol/L Alo, the aforementioned assays were applied to evaluate the effects of TLR4 overexpression on the TLR4/NF-κB/NLRP3 signaling, LDH activity, apoptosis, inflammatory response and oxidative stress in cells. Results CSE exposure might inhibit 16HBE cell viability, increase LDH activity, apoptosis, inflammatory response and oxidative stress levels and activate TLR4/NF-κB/NLRP3 signaling. Treatment with Alo promoted cell viability, decreased LDH activity, cell apoptosis, inflammation and oxidative stress levels, and inactivated TLR4/NF-κB/NLRP3 signaling. Furthermore, TLR4 overexpression might reverse the protective role of Alo treatment in CSE-induced injury in 16HBE cells. Conclusion Alo may ameliorate CSE-induced injury in human bronchial epithelial cells via inhibiting TLR4/NF-κB/NLRP3 signaling.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!