Background: Lignin is an intricate phenolic polymer found in plant cell walls that has tremendous potential for being converted into value-added products with the possibility of significantly increasing the economics of bio-refineries. Although lignin in nature is bio-degradable, its biocatalytic conversion is challenging due to its stable complex structure and recalcitrance. In this context, an understanding of strain's genomics, enzymes, and degradation pathways can provide a solution for breaking down lignin to unlock the full potential of lignin as a dominant valuable bioresource. A gammaproteobacterial strain AORB19 has been isolated previously from decomposed wood based on its high laccase production. This work then focused on the detailed genomic and functional characterization of this strain based on whole genome sequencing, the identification of lignin degradation products, and the strain's laccase production capabilities on various agro-industrial residues.

Results: Lignin degrading bacterial strain AORB19 was identified as Serratia quinivorans based on whole genome sequencing and core genome phylogeny. The strain comprised a total of 123 annotated CAZyme genes, including ten cellulases, four hemicellulases, five predicted carbohydrate esterase genes, and eight lignin-degrading enzyme genes. Strain AORB19 was also found to possess genes associated with metabolic pathways such as the β-ketoadipate, gentisate, anthranilate, homogentisic, and phenylacetate CoA pathways. LC-UV analysis demonstrated the presence of p-hydroxybenzaldehyde and vanillin in the culture media which constitutes potent biosignatures indicating the strain's capability to degrade lignin. Finally, the study evaluated the laccase production of Serratia AORB19 grown with various industrial raw materials, with the highest activity detected on flax seed meal (257.71 U/L), followed by pea hull (230.11 U/L), canola meal (209.56 U/L), okara (187.67 U/L), and barley malt sprouts (169.27 U/L).

Conclusions: The whole genome analysis of Serratia quinivorans AORB19, elucidated a repertoire of genes, pathways and enzymes vital for lignin degradation that widens the understanding of ligninolytic metabolism among bacterial lignin degraders. The LC-UV analysis of the lignin degradation products coupled with the ability of S. quinivorans AORB19 to produce laccase on diverse agro-industrial residues underscores its versatility and its potential to contribute to the economic viability of bio-refineries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11127350PMC
http://dx.doi.org/10.1186/s12866-024-03331-3DOI Listing

Publication Analysis

Top Keywords

lignin degradation
16
serratia quinivorans
12
quinivorans aorb19
12
strain aorb19
12
laccase production
12
lignin
11
based genome
8
genome sequencing
8
degradation products
8
lc-uv analysis
8

Similar Publications

Grapes are prone to softening, which limits their shelf life and suitability for long-distance transport. This study explored the molecular mechanisms underlying the effects of the chemical preservatives gibberellin (GA) and the nitric oxide donor sodium nitroprusside (SNP) on grape firmness. Enhancing grape quality, prolonging shelf life, and extending market supply were key objectives.

View Article and Find Full Text PDF

The microbiota of cork and yellow stain as a model for a new route for the synthesis of chlorophenols and chloroanisoles from the microbial degradation of suberin and/or lignin.

Microbiome

January 2025

Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.

Article Synopsis
  • Cork is primarily used for wine bottle stoppers, but it can contain 2,4,6-trichloroanisole, which causes a musty odor that negatively affects wine quality and leads to financial losses.
  • The presence of yellow stain in cork indicates a degradation linked to higher microbial populations, particularly filamentous fungi that break down lignin, and this microbiota contributes to the formation of chlorophenols and chloroanisoles.
  • Research identified specific fungal and bacterial species associated with yellow stain and demonstrated that certain strains can convert p-hydroxybenzoate into phenol, which can then be chlorinated, potentially leading to the development of 2,4,6-trichlorophenol.
View Article and Find Full Text PDF

One-Pot lignin bioconversion to polyhydroxyalkanoates based on hierarchical utilization of heterogeneous compounds.

Bioresour Technol

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:

Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1-1.

View Article and Find Full Text PDF

Preparation of crosslinked lignin-polyacrylamide hydrogel with high resistance to temperature and salinity.

Int J Biol Macromol

January 2025

Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China. Electronic address:

In this study, we innovatively prepared a multifunctional lignin crosslinked polyacrylamide (L-cPAM) hydrogel by a sequential two-step strategy of crosslinking of lignin and crosslinked polyacrylamide (cPAM) followed by the polymerization of cPAM. The hydrogen bonding and crosslinking between the molecular chains of lignin and PAM established a rigid and porous network structure, which provided the L-cPAM hydrogel with excellent mechanical strength, thermal stability, and salinity resistance. A series of lignin dosages (0 to 30 %) were investigated during the crosslinking of lignin and PAM.

View Article and Find Full Text PDF

Leveraging almost hydrophobic PVDF membrane and in-situ ozonation in O/UF/BAC system for superior anti-fouling and rejection performance in drinking water treatment.

Water Res

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:

The almost hydrophobic PVDF membrane (PVDF matrix) commonly exhibited excellent performance in pollutant rejection but with poor anti-fouling performance. This study intended to develop the rejection performance and enhance anti-fouling of the PVDF membrane in an O/UF/BAC system for high quality water production through leveraging the advantages of in-situ ozonation and the nature of the PVDF membrane. Reduced density gradient (RDG) analysis demonstrated that the PVDF membrane exhibited excellent ozone resistance by reducing hydrogen bonds and electrostatic interactions between the membrane surface and ozone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!