Runx2 Suppresses Astrocyte Activation and Astroglial Scar Formation After Spinal Cord Injury in Mice.

Mol Neurobiol

Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.

Published: December 2024

After spinal cord injury, astrocytes undergo a reactive process and form an astroglial scar, which impedes the regeneration of axons. The role of Runx2 in promoting the transformation of astrocytes in the central nervous system is well-established. However, it remains unclear whether Runx2 also plays a role in the development of astroglial scar, and the precise underlying mechanism has yet to be identified. Recently, our study using cell culture and animal models has demonstrated that Runx2 actually suppresses astrocyte activation and the formation of astroglial scar following injury. The initial results demonstrated an increase in the expression of Runx2 in astrocytes following in vivo injury. Subsequently, the overexpression of Runx2 resulted in the inhibition of astrocyte activation, reduction in the total area of astroglial scar, and restoration of neural function after 14 days of injury. However, these effects were reversed by CADD522. These findings indicate that Runx2 could potentially serve as a therapeutic intervention for spinal cord injury (SCI). Furthermore, our findings suggest that the Nuclear-matrix-targeting signal (NMTS) of Runx2 is associated with its effect. In summary, the study's results propose that targeting Runx2 may be a promising treatment approach for reactive astrocytes and astroglial scar in the recovery of SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584425PMC
http://dx.doi.org/10.1007/s12035-024-04212-6DOI Listing

Publication Analysis

Top Keywords

astroglial scar
24
astrocyte activation
12
spinal cord
12
cord injury
12
runx2
9
runx2 suppresses
8
suppresses astrocyte
8
astroglial
6
scar
6
injury
6

Similar Publications

Microglial cell proliferation is regulated, in part, by reactive astrocyte ETB signaling after ischemic stroke.

Exp Neurol

December 2024

Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA. Electronic address:

Reciprocal communication between reactive astrocytes and microglial cells provides local, coordinated control over critical processes such as neuroinflammation, neuroprotection, and scar formation after CNS injury, but is poorly understood. The vasoactive peptide hormone endothelin (ET) is released and/or secreted by endothelial cells, microglial cells and astrocytes early after ischemic stroke and other forms of brain injury. To better understand glial cell communication after stroke, we sought to identify paracrine effectors produced and secreted downstream of astroglial endothelin receptor B (ETB) signaling.

View Article and Find Full Text PDF

Background: Reactive astrogliosis and microgliosis are coordinated responses to CNS insults and are pathological hallmarks of traumatic brain injury (TBI). In these conditions, persistent reactive gliosis can impede tissue repopulation and limit neurogenesis. Thus, modulating this phenomenon has been increasingly recognized as potential therapeutic approach.

View Article and Find Full Text PDF

Traumatic spinal cord injury (tSCI) has complex pathophysiological events that begin after the initial trauma. One such event is fibroglial scar formation by fibroblasts and reactive astrocytes. A strong inhibition of axonal growth is caused by the activated astroglial cells as a component of fibroglial scarring through the production of inhibitory molecules, such as chondroitin sulfate proteoglycans or myelin-associated proteins.

View Article and Find Full Text PDF

Astrocytes, reactive astrogliosis, and glial scar formation in traumatic brain injury.

Neural Regen Res

April 2025

Laboratorio de Neuropatología Molecular, IBCN UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.

Traumatic brain injury is a global health crisis, causing significant death and disability worldwide. Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments, with astrocytes involved in this response. Following traumatic brain injury, astrocytes rapidly become reactive, and astrogliosis propagates from the injury core to distant brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!