Polycyclic aromatic hydrocarbons (PAHs) are a widespread group of organic contaminants whose presence in water bodies is cause of severe concern. With few exceptions, the majority of PAHs is hydrophobic, presents a high adsorption affinity, and is thus primarily transported within river systems during high-flow events together with suspended particulate matter (SPM). Evidence exists of analytical challenges related to the incomplete extraction of PAHs adsorbed to solids and thus to a potential negative bias in the chemical analysis of PAHs in bulk water samples with high SPM content. Despite this, partly due to the elevated efforts required to collect representative samples containing sufficient SPM for the separate PAH analysis in this matrix, several investigations rely on the analysis of aqueous samples. This study tests the hypothesis that surveys based exclusively on bulk water may lead to a systematic underestimation of the real contamination level and transport of PAHs in rivers. Six high-turbidity events were examined in three Austrian rivers applying time-integrated sampling and simultaneously analyzing PAHs in total bulk water, filtered water, SPM, and supernatant. Despite an unavoidable degree of uncertainty in such challenging sampling scheme, the results indicate that measurements performed with best available standard methods in bulk water samples determined in average only about 40% of the theoretically expected total PAHs concentrations derived from the analyses in SPM. Such deviation has important implications for the reliable assessment of the compliance with environmental quality standards as well as for surveys aimed to estimate riverine loads, validate emission models, and understand the transport dynamics of PAHs in rivers. Whereas the first objective, e.g., in European countries, is alternatively achieved via monitoring in biota, the latter ones require efforts directed to complement monitoring campaigns with separate sampling of SPM, with monitoring of suspended solids transport to appropriately select and interpret the results of water samples and to improve the chemical analysis of PAHs in bulk water samples with high solids content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189336 | PMC |
http://dx.doi.org/10.1007/s11356-024-33787-9 | DOI Listing |
Land use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Dietary fiber (DF) is an indigestible carbohydrate in plant foods that supports various physiological functions. This study aimed to extract the soluble and insoluble dietary fiber (DF) from the curry leaves and investigate their physicochemical properties as well as their functional role in the homeostasis of the gut microbiome. The study observed that insoluble-DF (IDF) yielded higher amounts than soluble-DF (SDF) across alkali, acid, and water extraction methods.
View Article and Find Full Text PDFSci Rep
December 2024
Grassland Technique Extension Station of Gansu Province, Lanzhou, 730000, Gansu, China.
Near-natural restoration is acknowledged as an effective strategy for enhancing soil organic carbon (SOC) sequestration in degraded grasslands. However, the alterations in SOC fractions, stability, and relative sequestration capacity after restoration of degraded alpine meadows remain uncertain. In this study, we utilized the degraded alpine meadows on the northeastern edge of the Tibetan Plateau as a research area, with grazing as the control (CK) and restoration of 20 years of banned grazing (BG) and growing season resting grazing (RG).
View Article and Find Full Text PDFTo address the challenges of performing in-situ tests on riverbed overburden gravel, this study employs three scaling methods-equal mass substitution, similar gradation, and the mixed method-to investigate the original gradation of the gravel. Large-scale triaxial consolidated drained shear tests were conducted to evaluate the effects of the maximum particle size reduction ratio (M) and confining pressure on the stress-strain behavior, fractal dimension, particle breakage, and the parameters of the Duncan-Chang model (an elastic model describing nonlinear stress-strain relationships). The study explores how scaling, based on fractal dimension and particle breakage rate, impacts the strength and deformation characteristics of gravel materials.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.
We observed bilayer phase transitions of dimyristoylphosphatidylcholine (DMPC) in aqueous solutions of four kinds of monosaccharides, namely, D-glucose, D-fructose, D-allose and D-psicose, using differential scanning calorimetry (DSC). D-allose (C3-epimer of D-glucose) and D-psicose (C3-epimer of D-fructose) are rare sugars. We performed DSC measurements using two types of sugar-containing sample dispersions of the DMPC vesicles: one is a normal sample dispersion with no concentration asymmetry between the inside and outside of the vesicles and the other is an unusual sample dispersion with a concentration asymmetry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!