Co-fermentation performed by Saccharomyces cerevisiae and Escherichia coli or other microbes has been widely used in industrial fermentation. Meanwhile, the co-cultured microbes might regulate each other's metabolisms or cell behaviors including oxidative stress tolerance through secreting molecules. Here, results based on the co-culture system of S. cerevisiae and E. coli suggested the promoting effect of E. coli on the oxidative stress tolerance of S. cerevisiae cells. The co-cultured E. coli could enhance S. cerevisiae cell viability through improving its membrane stability and reducing the oxidized lipid level. Meanwhile, promoting effect of the co-cultured supernatant on the oxidative stress tolerance of S. cerevisiae illustrated by the supernatant substitution strategy suggested that secreted compounds contained in the co-cultured supernatant contributed to the higher oxidative stress tolerance of S. cerevisiae. The potential key regulatory metabolite (i.e., hexadecanoic acid) with high content difference between co-cultured supernatant and the pure-cultured S. cerevisiae supernatant was discovered by GC-MS-based metabolomics strategy. And exogenous addition of hexadecanoic acid did suggest its contribution to higher oxidative stress tolerance of S. cerevisiae. Results presented here would contribute to the understanding of the microbial interactions and provide the foundation for improving the efficiency of co-fermentation performed by S. cerevisiae and E. coli.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-024-04004-zDOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
stress tolerance
24
tolerance cerevisiae
16
hexadecanoic acid
12
co-cultured supernatant
12
cerevisiae
10
co-fermentation performed
8
cerevisiae coli
8
higher oxidative
8
oxidative
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!