Repurposing a plant peptide cyclase for targeted lysine acylation.

Nat Chem

Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.

Published: September 2024

Transpeptidases are powerful tools for protein engineering but are largely restricted to acting at protein backbone termini. Alternative enzymatic approaches for internal protein labelling require bulky recognition motifs or non-proteinogenic reaction partners, potentially restricting which proteins can be modified or the types of modification that can be installed. Here we report a strategy for labelling lysine side chain ε-amines by repurposing an engineered asparaginyl ligase, which naturally catalyses peptide head-to-tail cyclization, for versatile isopeptide ligations that are compatible with peptidic substrates. We find that internal lysines with an adjacent leucine residue mimic the conventional N-terminal glycine-leucine substrate. This dipeptide motif enables efficient intra- or intermolecular ligation through internal lysine side chains, minimally leaving an asparagine C-terminally linked to the lysine side chain via an isopeptide bond. The versatility of this approach is demonstrated by the chemoenzymatic synthesis of peptides with non-native C terminus-to-side chain topology and the conjugation of chemically modified peptides to recombinant proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374674PMC
http://dx.doi.org/10.1038/s41557-024-01520-1DOI Listing

Publication Analysis

Top Keywords

lysine side
12
side chain
8
repurposing plant
4
plant peptide
4
peptide cyclase
4
cyclase targeted
4
lysine
4
targeted lysine
4
lysine acylation
4
acylation transpeptidases
4

Similar Publications

Selective labeling of tyrosine residues in proteins: insights from PTAD labeling and tandem mass spectrometry analysis.

Mol Omics

December 2024

Department of Chemistry and Biochemistry, University of Texas at Arlington, Box 19065, 700 Planetarium Place, Room 130, Arlington, TX 76019, USA.

Designing reagents for protein labeling is crucial for investigating cellular events and developing new therapeutics. Historically, much effort has been focused on labeling lysine and arginine residues due to their abundance on the protein periphery. The chemo-selectivity of these reagents is a challenging yet crucial parameter for deciphering properties specifically associated with the targeted amino acid.

View Article and Find Full Text PDF

Lysine malonylation is a post-translational modification where a malonyl group, characterized by a negatively charged carboxylate, is covalently attached to the ε-amino side chain of lysine, influencing protein structure and function. Our laboratory identified Mak upregulation in cartilage under aging and obesity, contributing to osteoarthritis (OA). Current antibody-based detection methods face limitations in identifying Mak targets.

View Article and Find Full Text PDF

HDAC10 switches NLRP3 modification from acetylation to ubiquitination and attenuates acute inflammatory diseases.

Cell Commun Signal

December 2024

Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China.

Background: The NOD-like receptor protein (NLRP)3 inflammasome is at the signaling hub center to instigate inflammation in response to pathogen infection or oxidative stress, and its tight control is pivotal for immune defense against infection while avoiding parallel intensive inflammatory tissue injury. Acetylation of NLRP3 is critical for the full activation of NLRP3 inflammasome, while the precise regulation of the acetylation and deacetylation circuit of NLRP3 protein remained to be fully understood.

Methods: The interaction between histone deacetylase 10 (HDAC10) and NLRP3 was detected by immunoprecipitation and western blot in the HDAC10 and NLRP3 overexpressing cells.

View Article and Find Full Text PDF

We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA--K, KAAA--K, and HAAA--K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups.

View Article and Find Full Text PDF

Structural Evolution of Retinal Chromophore in Early Intermediates of Inward and Outward Proton-Pumping Rhodopsins.

J Phys Chem B

December 2024

Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

Proton-pumping rhodopsins, which consist of seven transmembrane helices and have a retinal chromophore bound to a lysine side chain through a Schiff base linkage, offer valuable insights for developing unidirectional ion transporters. Despite identical overall structures and membrane topologies of outward and inward proton-pumping rhodopsins, these proteins transport protons in opposing directions, suggesting a rational mechanism that enables protons to move in different directions within similar protein structures. In the present study, we clarified the chromophore structures in early intermediates of inward and outward proton-pumping rhodopsins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!