Chimeric antigen receptor engineered T (CAR T) cell therapy has developed rapidly in recent years, leading to profound developments in oncology, especially for hematologic malignancies. However, given the pressure of immunosuppressive tumor microenvironments, antigen escape, and diverse other factors, its application in solid tumors is less developed. Urinary system tumors are relatively common, accounting for approximately 24% of all new cancers in the United States. CAR T cells have great potential for urinary system tumors. This review summarizes the latest developments of CAR T cell therapy in urinary system tumors, including kidney cancer, bladder cancer, and prostate cancer, and also outlines the various CAR T cell generations and their pathways and targets that have been developed thus far. Finally, the current advantages, problems, and side effects of CAR T cell therapy are discussed in depth, and potential future developments are proposed in view of current shortcomings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126652PMC
http://dx.doi.org/10.1038/s41419-024-06734-2DOI Listing

Publication Analysis

Top Keywords

car cell
20
cell therapy
16
urinary system
12
system tumors
12
car
6
cell
5
tumors
5
molecular understanding
4
understanding clinical
4
clinical outcomes
4

Similar Publications

Characterization of Tumor Antigens from Multi-omics Data: Computational Approaches and Resources.

Genomics Proteomics Bioinformatics

January 2025

Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.

Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.

View Article and Find Full Text PDF

Generation of Human Chimeric Antigen Receptor Regulatory T Cells.

J Vis Exp

January 2025

Department of Microbiology and Immunology, Medical University of South Carolina; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Hollings Cancer Center, Medical University of South Carolina;

Chimeric antigen receptor (CAR) T-cell therapy has reshaped the face of cancer treatment, leading to record remission rates in previously incurable hematological cancers. These successes have spurred interest in adapting the CAR platform to a small yet pivotal subset of CD4 T cells primarily responsible for regulating and inhibiting the immune response, regulatory T cells (Tregs). The ability to redirect Tregs' immunosuppressive activity to any extracellular target has enormous implications for creating cell therapies for autoimmune disease, organ transplant rejection, and graft-versus-host disease.

View Article and Find Full Text PDF

Multiple myeloma is a disease related to the proliferation of malignant plasma cells; in most patients, the disease is confined to the level of bone marrow. However, in a minority of patients, the malignant plasma cells are also localized outside the bone marrow, either at the level of peripheral blood (plasma cell leukemia) or at the level of soft tissues (extramedullary multiple myeloma). These two rare forms of aggressive MM (ultrahigh-risk (uHR) MM as MM leading to death within 24-36 months) are both associated with some molecular features and with a limited response to current treatments.

View Article and Find Full Text PDF

Targeting MYCN upregulates L1CAM tumor antigen in MYCN-dysregulated neuroblastoma to increase CAR T cell efficacy.

Pharmacol Res

January 2025

Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Augustenburger Platz 1, 13353 Berlin, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Virchowweg 23, 10117 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Anna-Louisa-Karsch-Strasse 2, 10178 Berlin, Germany. Electronic address:

Current treatment protocols have limited success against MYCN-amplified neuroblastoma. Adoptive T cell therapy presents an innovative strategy to improve cure rates. However, L1CAM-targeting CAR T cells achieved only limited response against refractory/relapsed neuroblastoma so far.

View Article and Find Full Text PDF

Airborne quasi-ultrafine particle samples were collected from different outdoor sites in Barcelona (NE Spain, 35 samples) and the Valencia subway (about 400 km south of Barcelona, 3 samples). Locations and schedules were designed to cover cold and warm seasons and to represent the impact of different types of transport (cars, trains, ships, and planes). Extracts from PTFE filters (methanol:dichloromethane 1:2) were used to test toxic effects in human cell lines (Induction of reactive oxygen species, inflammatory response) and in zebrafish embryos (expression of xenobiotic response-related genes, cyp1a1, gsa1 and hao1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!