Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Single-nucleotide variants (SNVs) in Mycobacterium tuberculosis (M. tuberculosis) genomes can predict multidrug resistance (MDR) but not all phenotype-genotype correlations can be explained. We investigated SNVs in efflux pumps (EPs) in the context of M. tuberculosis drug resistance.
Methods: We analysed 2221 M. tuberculosis genomes from 1432 susceptible and 200 MDR, 172 pre-extensively drug resistant (XDR) and 417 XDR isolates. Analysis of 47 EP genes was conducted using MTB-VCF, an in-house bioinformatics pipeline. SNVs were categorized according to their SIFT/Polyphen scores. Resistance genotypes were also called using the TB-Profiler tool.
Results: Genome comparisons between susceptible and drug resistant (DR) isolates identified 418 unique SNVs in EP of which; 53.5% were in MDR, 68.9% in pre-XDR and 61.3% in XDR isolates. Twenty EPs had unique SNVs with a high SIFT/PolyPhen score, comprising 38 unique SNVs. Sixteen SNVs across 12 EP genes were significantly associated with drug resistance and enriched in pre-XDR and XDR strains. These comprised 12 previously reported SNVs (in Rv0191, Rv0507, Rv0676, Rv1217, Rv1218, Rv1273, Rv1458, Rv1819, and Rv2688) and 4 novel SNVs (in Rv1877 and Rv2333). We investigated their presence in genomes of 52 MDR isolates with phenotype-genotype discrepancies to rifampicin (RIF), isoniazid (INH), or fluoroquinolones. SNVs associated with RIF and INH (Rv1217_1218, Rv1819, Rv0450, Rv1458, Rv3827, Rv0507, Rv0676, Rv1273, and Rv2333), and with fluoroquinolone (Rv2688) resistance were present in these discrepant strains.
Conclusions: Considering SNVs in EPs as part of M. tuberculosis genome-based resistance interpretation may add value, especially in evaluation of XDR resistance in strains with phenotype-genotype discrepancies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgar.2024.05.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!