The vast discharge of methylene blue (MB) dye in industrial effluent, risks the ecological environment, thus making its removal unavoidable. Recently, metal organic frameworks (MOFs) due to their larger pore volume, surface area and easy synthesis have proved to be exceptionally promising materials for contaminant treatment. Based on 1,3,5-benzenetricarboxylic acid (BTC) as a modifier, a new composite material consisting of BTC and Zr-based MOF (UIO-66-BTC) was fabricated for the effective removal of MB from the effluent. Its synthesis and efficient application has been confirmed by characterization analysis. The influencing factors, adsorption isotherms, and adsorption kinetics of MB adsorption by adsorbent were studied. It was demonstrated that the removal rate of MB adsorption by UIO-66-BTC reached 98.45% and the adsorption amount reached 393.80 mg g at temperature (298 K), pH 7, adsorbent dosage (0.5 g L), MB initial concentration (200 mg L), and contact time of 720 min, respectively. The maximum adsorption of MB by UIO-66-BTC was 20.827 times higher than that of UIO-66 (18.908 mg g). The experimental data fits with the pseudo-second-order kinetic model and Langmuir isotherm, implying that the adsorption process is a monolayer chemisorption process. The thermodynamic and regeneration experiments showed that the spontaneous process enhanced the adsorption of MB at lower temperatures and the adsorption efficiency of MB remained above 68% after five successive cycles. The mechanism of MB adsorption on adsorbents is mainly based on electrostatic interactions, pore filling, hydrogen bonding and π-π interactions. It is concluded that this new adsorbent can be effectively used to treat MB in effluents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142381DOI Listing

Publication Analysis

Top Keywords

adsorption
10
methylene blue
8
organic frameworks
8
135-benzenetricarboxylic acid
8
adsorption uio-66-btc
8
high-efficient removal
4
removal methylene
4
blue zirconium-based
4
zirconium-based organic
4
frameworks modified
4

Similar Publications

It is crucial to comprehend protein misfolding and aggregation in the domains of biomedicine, pharmaceuticals, and proteins. Amyloid fibrils are formed when proteins misfold and assemble, resulting in the debilitating illness known as "amyloidosis". This work investigates lysozyme fibrillation with pluronics (F68 and F127).

View Article and Find Full Text PDF

Exploiting cost-effective hydrogen evolution reaction (HER) catalysts is crucial for sustainable hydrogen production. However, currently reported nanocatalysts usually cannot simultaneously sustain high catalytic activity and long-term durability. Here, we report the efficient synthesis and activity tailoring of a chainmail catalyst, isolated platinum atom anchored tungsten carbide nanocrystals encapsulated inside carbon nanotubes (Pt/WC@CNTs), by confined flash Joule heating technique.

View Article and Find Full Text PDF

Unlabelled: Quorum sensing (QS) can regulate diverse critical phenotypic responses in (), enabling bacterial adaptation to external environmental fluctuations and optimizing population advantages. While there is emerging evidence of QS's involvement in influencing phage infections, our current understanding remains limited, necessitating further investigation. In this study, we isolated and characterized a novel phage designated as BUCT640 that infected PAO1.

View Article and Find Full Text PDF

Emerging biosensing platforms based on metal-organic frameworks (MOFs) for detection of exosomes as diagnostic cancer biomarkers: case study for the role of the MOFs.

J Mater Chem B

January 2025

Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.

Exosomes, which are considered nanoscale extracellular vesicles (EVs), are secreted by various cell types and widely distributed in different biological fluids. They consist of multifarious bioactive molecules and use systematic circulation for their transfer to adjoining cells. This phenomenon enables exosomes to take part in intercellular and intracellular communications.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries promise low-cost and safe grid storage, but their practical application is hindered by poor Zn anode reversibility, primarily due to dendrite formation and water-induced side reactions in the electric double layer (EDL) structure. Herein, a monolayer of hydrophobic carbon dots (CDs) was dynamically constructed at the electrode/electrolyte interface. The trace-added hydrophobic CDs in the electrolyte reconstruct a hydrophobic and favorable EDL structure, suppressing water-induced side reactions in the inner Helmholtz layer and facilitating the desolvation of hydrated zinc ions at the outer Helmholtz layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!