Brain-computer interfaces (BCIs), a remarkable technological advancement in neurology and neurosurgery, mark a significant leap since the inception of electroencephalography in 1924. These interfaces effectively convert central nervous system signals into commands for external devices, offering revolutionary benefits to patients with severe communication and motor impairments due to a myriad of neurological conditions like stroke, spinal cord injuries, and neurodegenerative disorders. BCIs enable these individuals to communicate and interact with their environment, using their brain signals to operate interfaces for communication and environmental control. This technology is especially crucial for those completely locked in, providing a communication lifeline where other methods fall short. The advantages of BCIs are profound, offering autonomy and an improved quality of life for patients with severe disabilities. They allow for direct interaction with various devices and prostheses, bypassing damaged or nonfunctional neural pathways. However, challenges persist, including the complexity of accurately interpreting brain signals, the need for individual calibration, and ensuring reliable, long-term use. Additionally, ethical considerations arise regarding autonomy, consent, and the potential for dependence on technology. Despite these challenges, BCIs represent a transformative development in neurotechnology, promising enhanced patient outcomes and a deeper understanding of brain-machine interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2024.05.104DOI Listing

Publication Analysis

Top Keywords

brain-computer interfaces
8
patients severe
8
brain signals
8
interfaces
5
bridging minds
4
minds machines
4
machines advances
4
advances brain-computer
4
interfaces neurological
4
neurological neurosurgical
4

Similar Publications

In this paper, a bibliometric review is conducted on brain-computer interfaces (BCI) in non-invasive paradigms like motor imagery (MI) and steady-state visually evoked potentials (SSVEP) for applications in rehabilitation and robotics. An exploratory and descriptive approach is used in the analysis. Computational tools such as the biblioshiny application for R-Bibliometrix and VOSViewer are employed to generate data on years, sources, authors, affiliation, country, documents, co-author, co-citation, and co-occurrence.

View Article and Find Full Text PDF

Performance Improvement with Reduced Number of Channels in Motor Imagery BCI System.

Sensors (Basel)

December 2024

Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey.

Classifying Motor Imaging (MI) Electroencephalogram (EEG) signals is of vital importance for Brain-Computer Interface (BCI) systems, but challenges remain. A key challenge is to reduce the number of channels to improve flexibility, portability, and computational efficiency, especially in multi-class scenarios where more channels are needed for accurate classification. This study demonstrates that combining Electrooculogram (EOG) channels with a reduced set of EEG channels is more effective than relying on a large number of EEG channels alone.

View Article and Find Full Text PDF

The extraction and analysis of pitch underpin speech and music recognition, sound segregation, and other auditory tasks. Perceptually, pitch can be represented as a helix composed of two factors: height monotonically aligns with frequency, while chroma cyclically repeats at doubled frequencies. Although the early perceptual and neurophysiological mechanisms for extracting pitch from acoustic signals have been extensively investigated, the equally essential subsequent stages that bridge to high-level auditory cognition remain less well understood.

View Article and Find Full Text PDF

Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.

View Article and Find Full Text PDF

Resistive memory-based zero-shot liquid state machine for multimodal event data learning.

Nat Comput Sci

January 2025

Key Lab of Fabrication Technologies for Integrated Circuits and Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China.

The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!