Prediction of carbon emissions in China's construction industry using an improved grey prediction model.

Sci Total Environ

School of Economics and Management, Nanchang University, Nanchang, China; Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon; Research Center of the Central China for Economic and Social Development, Nanchang University, Nanchang, China. Electronic address:

Published: August 2024

As a significant source of global energy consumption and greenhouse gas emissions, the construction industry garners widespread attention due to its high carbon emissions. Anticipating its development trends is crucial for energy conservation and emission reduction. In this paper, we utilize the carbon emission data from China's national and provincial construction sectors from 2012 to 2021, employ the grey prediction model optimized by the particle swarm optimization algorithm, coupled with a metabolic algorithm, to forecast the carbon emissions of the construction industry across China and its provinces. The results demonstrate that: (1) The dynamic grey prediction model combined with the metabolism algorithm has a better prediction effect than the classical model, and the relative error is reduced from 5.103 % to 0.874 %. (2) The carbon emissions of China's construction industry will continue to rise in the next decade, but the growth rate will decrease, and the proportion of indirect carbon emissions continues to increase. (3) There is a marked regional disparity in carbon emissions, with the eastern region exhibiting higher emission levels yet slower growth. In contrast, the western region has lower emission levels but experiences faster growth. These studies provide valuable insights for both the existing approaches to energy conservation and emission reduction, as well as for future policy improvements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173351DOI Listing

Publication Analysis

Top Keywords

carbon emissions
24
construction industry
16
grey prediction
12
prediction model
12
emissions china's
8
china's construction
8
emissions construction
8
energy conservation
8
conservation emission
8
emission reduction
8

Similar Publications

Unlocking 3D printing technology for microalgal production and application.

Adv Biotechnol (Singap)

October 2024

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.

Microalgae offer a promising alternative for sustainable nutritional supplements and functional food ingredients and hold potential to meet the growing demand for nutritious and eco-friendly food alternatives. With the escalating impacts of global climate change and increasing human activities, microalgal production must be enhanced by reducing freshwater and land use and minimizing carbon emissions. The advent of 3D printing offers novel opportunities for optimizing microalgae production, though it faces challenges such as high production costs and scalability concerns.

View Article and Find Full Text PDF

Removal of dissolved organic matter in road runoff with sludge-based filters from the drinking water treatment plant.

Water Sci Technol

January 2025

China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.

Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.

View Article and Find Full Text PDF

Fluorescent nitrogen-doped carbon dots (N-GQDs) with long-wavelength emission properties are of increased interest for technological applications. They are widely synthesized through the solvothermal treatment of graphene oxide (GO) using ,-dimethylformamide (DMF) as a cleaving and doping agent. However, this process simultaneously generates undesired interfering blue-emissive by-products.

View Article and Find Full Text PDF

This study investigated the ramifications of black carbon (BC) emissions on human health during the winter season of December 2019 to February 2020 in Dhaka, Bangladesh. BC, arising from incomplete combustion of fossil and biofuels, underwent meticulous measurement of densities, concentrations, and emissions at two pivotal sites. Employing low-volume air samplers with Quartz filters and subsequent analysis with an Aethalometer (Soot scanner, OT21, USA), the study unveiled monthly average BC densities of 1.

View Article and Find Full Text PDF

Aim: To evaluate the correlation between semi-quantitative analyses and visual scores of pulmonary perfusion Single Photon Emission Computed Tomography (SPECT)/ Computed Tomography (CT) imaging and pulmonary function test parameters (PFTs) in patients with interstitial lung diseases (ILDs).

Materials And Methods: This retrospective study included 35 patients with ILDs from China-Japan Friendship Hospital between January 2020 and December 2022. All patients underwent pulmonary perfusion SPECT/CT imaging and a pulmonary function test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!