A metabolomics analysis of interspecies and seasonal trends in ruminant milk: The molecular difference between bovine, caprine, and ovine milk.

J Dairy Sci

High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand; Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand.

Published: September 2024

Ruminant milk composition can be affected by many factors, primarily interspecies differences, but also environmental factors (e.g., season, feeding system, and feed composition). Pasture-based feeding systems are known to be influenced by seasonal effects on grass composition. Spring pasture is rich in protein and low in fiber compared with late-season pasture, potentially inducing variability in the composition of some milk metabolites across the season. This study aimed to investigate interspecies and seasonal differences in the milk metabolome across the 3 major commercial ruminant milk species from factories in New Zealand: bovine, caprine, and ovine milk. Samples of bovine (n = 41) and caprine (n = 44) raw milk were collected monthly for a period of 9 mo (August 2016-April 2017), and ovine milk samples (n = 20) were collected for a period of 5 mo (August 2016-January 2017). Milk samples were subjected to biphasic extraction, and untargeted metabolite profiling was performed using 2 separate liquid chromatography high-resolution mass spectrometry analytical methods (polar metabolites and lipids). Major differences in the milk metabolome were observed between the 3 ruminant species, with 414 of 587 (71%) polar metabolite features and 210 of 233 (87%) lipid features being significantly different between species. Significant seasonal trends were observed in the polar metabolite fraction for bovine, caprine, and ovine milk (17, 24, and 32 metabolites, respectively), suggesting that the polar metabolite relative intensities of ovine and caprine milk were more susceptible to changes within seasons than bovine milk. We found no significant seasonal difference for the triglycerides (TG) species measured in bovine milk, whereas 3 and 52 TG species changed in caprine and ovine milk, respectively, across the seasons. In addition, 4 phosphatidylcholines and 2 phosphatidylethanolamines varied in caprine milk within the season, and 8 diglycerides varied in ovine milk. The interspecies and seasonal metabolite differences reported here provide a knowledge base of components potentially linked to milk physiochemical properties, and potential health benefits of New Zealand pasture-fed dairy ingredients.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2023-24595DOI Listing

Publication Analysis

Top Keywords

ovine milk
24
milk
19
bovine caprine
16
caprine ovine
16
interspecies seasonal
12
ruminant milk
12
milk samples
12
polar metabolite
12
seasonal trends
8
milk metabolites
8

Similar Publications

This study aimed to investigate the incidence of subclinical mastitis (SCM), the implicated pathogens, and their impact on milk quality in dairy sheep in Greece. Furthermore, we preliminarily evaluated infrared thermography and the application of AI tools for the early, non-invasive diagnosis of relevant cases. In total, 660 milk samples and over 2000 infrared thermography images were obtained from 330 phenotypically healthy ewes.

View Article and Find Full Text PDF

Distinctive molecular approaches and tools, particularly high-throughput SNP genotyping, have been applied to determine and discover SNPs, potential genes of interest, indicators of evolutionary selection, genetic abnormalities, molecular indicators, and loci associated with quantitative traits (QTLs) in various livestock species. These methods have also been used to obtain whole-genome sequencing (WGS) data, enabling the implementation of genomic selection. Genomic selection allows for selection decisions based on genomic-estimated breeding values (GEBV).

View Article and Find Full Text PDF

Herbs rich in secondary metabolites may possess beneficial properties in livestock nutrition and health. 49 Polygonaceae species of European mountain regions were included in a qualitative systematic review based on the methodological framework of the PRISMA statement. 174 relevant publications were identified.

View Article and Find Full Text PDF

is one of the most dangerous and contagious foodborne pathogens, posing a significant threat to public health and food safety. In this study, we developed a click chemistry-based fluorescence biosensing platform for highly sensitive detection of () by integrating the -cleavage activity of CRISPR/Cas12a with the CLICK17-mediated copper(II)-dependent azide-alkyne cycloaddition (Cu(II)AAC) click reaction. Herein, CLICK-17 can provide binding sites for Cu ions and high redox stability for one or much catalytically vital Cu within its active sites, which facilitate the click reaction.

View Article and Find Full Text PDF

A meta-analysis of dietary inhibitors for reducing methane emissions via modulating rumen microbiota in ruminants.

J Nutr

December 2024

National Center for International Research on Animal Gut Nutrition, Jingsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, 210095 China; College of Animal Science & Technology, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China. Electronic address:

Background: Rumen methane emissions (RME) significantly contribute to global greenhouse gas emissions, underscoring the essentials to identify effective inhibitors for RME mitigation. Despite various inhibitors shown potential in reducing RME by modulating rumen microbes, their impacts include considerable variations and inconsistency.

Objective: We aimed to quantitively assess the impacts of various methane inhibitors on RME, rumen microbial abundance and fermentation in ruminants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!