Understanding of characteristics and transport of perfluoroalkyl acids (PFAAs) in heterogeneous estuarine environments is limited. Furthermore, the role of suspended particles (SPS) in different layers remains unclear. This study explores the multiphase distribution process and mechanism of PFAAs controlled by SPS across surface and bottom layers in five small estuaries. Peaks in PFAA concentrations are consistently observed at strongly stratified sites. Concentrations of the PFAAs in both surface and bottom SPS decreased as the degree of mixing increased from strongly stratified levels to well-mixed levels. The water-SPS partitioning of some short-chain PFAAs (PFBS, PFHxA, and PFHpA) is influenced by environmental factors (pH, depth, temperature, and salinity) due to electrostatic interactions, while the sorption of some long-chain PFAAs (PFOA, PFOS, and PFNA) is controlled by SPS and dissolved organic carbon (OC), driven by hydrophobic interactions. Additionally, SPS dominates OC transport in estuarine systems, except in sandy sediment environments. SPS plays a dominant role in PFAA partitioning in both surface and bottom water-SPS systems (p < 0.05), and salinity only significantly affects PFBS in bottom layer (p < 0.01). These findings are critical for understanding the drivers of PFAA partitioning and the roles of SPS in different layers, underscoring the necessity of considering particle-associated PFAA fractions in future coastal environmental management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.134675 | DOI Listing |
Mater Horiz
January 2025
Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.
Passive daytime radiative cooling offers a promising approach to address energy, environmental, and safety issues caused by global warming. However, the contradiction between high radiative cooling performance and long-lasting ultraviolet (UV) durability is a primary limitation at the current stage. Here, inspired by the ability of epidermal cells and palisade cells on the leaf surface to protect internal leaf structures (such as chloroplasts and nuclei) under drought and high-temperature conditions, a double-layer passive radiative cooling (PRC) porous membrane, which consists of an upper protective layer densely packed with highly ultraviolet-reflective inorganic particles and a bottom cooling layer doped with a variety of optically characterized inorganic particles, was developed to overcome these challenges.
View Article and Find Full Text PDFSoft Matter
January 2025
Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
The effect of gravity on the collective motion of living microswimmers, such as bacteria and micro-algae, is pivotal to unravel not only bio-convection patterns but also the settling of bacterial biofilms on solid surfaces. In this work, we investigate suspensions of microswimmers under the influence of a gravitational field and hydrodynamics, simulated the dissipative particle dynamics (DPD) coarse-grained model. We first study the collective sedimentation of passive colloids and microswimmers of the puller and pusher types upon increasing the imposed gravitational field and compare them with previous results.
View Article and Find Full Text PDFSmall Methods
January 2025
Center for Photonics Information and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
Wide-bandgap perovskite solar cells (PVSCs), a promising top-cell candidate for high-performance tandem solar cells, often suffer from larger open-circuit voltage (V) deficits as the bandgap increases. Surface passivation is a common strategy to mitigate these V deficits. However, understanding the mechanisms underlying the differences in passivation effects among various types of molecules remains limited, which is crucial for developing universal interface passivation strategies and guiding the design of passivation molecules.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Laboratory of Geophysical EM Probing Technologies, Ministry of Natural Resources, Dongli, Tianjin 300300, China.
The strong multi-stage tectonic movement caused the northwest of the North China Plain to rise and the southeast to fall. The covering layer in the plain area was several kilometers thick. In addition to expensive drilling, it is difficult to obtain deep geological information through traditional geological exploration.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia.
Friction stir welding (FSW) is a solid-state welding process that uses a rotating tool to soften and stir the base metal, thereby joining it. A special type of tool that has attracted the interest of researchers is the so-called bobbin tool (BTFSW), which, unlike conventional tools with one shoulder, features two shoulders that envelop the base metal from both the top and bottom sides. As a result, significant tensile stresses develop on both sides of the weld, caused by the action of both tool shoulders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!