A machine learning model to predict the risk of perinatal depression: Psychosocial and sleep-related factors in the Life-ON study cohort.

Psychiatry Res

Sleep Medicine Unit, Neurocenter of Southern Switzerland, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Department of Neurology, University Hospital, Inselspital, Bern, Switzerland.

Published: July 2024

Perinatal depression (PND) is a common complication of pregnancy associated with serious health consequences for both mothers and their babies. Identifying risk factors for PND is key to early detect women at increased risk of developing this condition. We applied a machine learning (ML) approach to data from a multicenter cohort study on sleep and mood changes during the perinatal period ("Life-ON") to derive models for PND risk prediction in a cross-validation setting. A wide range of sociodemographic variables, blood-based biomarkers, sleep, medical, and psychological data collected from 439 pregnant women, as well as polysomnographic parameters recorded from 353 women, were considered for model building. These covariates were correlated with the risk of future depression, as assessed by regularly administering the Edinburgh Postnatal Depression Scale across the perinatal period. The ML model indicated the mood status of pregnant women in the first trimester, previous depressive episodes and marital status, as the most important predictors of PND. Sleep quality, insomnia symptoms, age, previous miscarriages, and stressful life events also added to the model performance. Besides other predictors, sleep changes during early pregnancy should therefore assessed to identify women at higher risk of PND and support them with appropriate therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psychres.2024.115957DOI Listing

Publication Analysis

Top Keywords

machine learning
8
perinatal depression
8
perinatal period
8
pregnant women
8
risk
6
pnd
5
women
5
model
4
learning model
4
model predict
4

Similar Publications

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Machine learning assisted classification RASAR modeling for the nephrotoxicity potential of a curated set of orally active drugs.

Sci Rep

January 2025

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.

We have adopted the classification Read-Across Structure-Activity Relationship (c-RASAR) approach in the present study for machine-learning (ML)-based model development from a recently reported curated dataset of nephrotoxicity potential of orally active drugs. We initially developed ML models using nine different algorithms separately on topological descriptors (referred to as simply "descriptors" in the subsequent sections of the manuscript) and MACCS fingerprints (referred to as "fingerprints" in the subsequent sections of the manuscript), thus generating 18 different ML QSAR models. Using the chemical spaces defined by the modeling descriptors and fingerprints, the similarity and error-based RASAR descriptors were computed, and the most discriminating RASAR descriptors were used to develop another set of 18 different ML c-RASAR models.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!