A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection of microplastics based on splicing grating spatial heterodyne Raman spectroscopy. | LitMetric

Detection of microplastics based on splicing grating spatial heterodyne Raman spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

College of Physics and Optoelectronic Engineering, Department of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China; Engineering Research Center of Advanced Marine Physical Instruments and Equipment, Ministry of Education, Qingdao, 266100, China.

Published: October 2024

As a new type of persistent pollutant, microplastics pose a serious threat to the earth's ecological environment and human health. Efficient and reliable microplastic detection technology is of great significance in the management of microplastic pollution. Aiming at the problems of low signal-to-noise ratio (SNR), narrow spectral range and low spectral resolution in traditional microplastic detection technology, a splicing grating spatial heterodyne Raman spectroscopy (SG-SHRS) is proposed in this paper. The splicing grating is composed of four sub-gratings with groove densities of 320, 298, 276 and 254 gr / mm, respectively. Each sub-grating has an independent sub-filter to improve the SNR of the system. The system is simulated, built and calibrated. The actual resolution of the SG-SHRS system is 0.7 cm, and the spectral detection range of a single sub-grating is 2947.2 cm. Four kinds of microplastics, polyamide (PA), polystyrene (PS), polycarbonate (PC), and polyphenylene sulfide (PPS), were detected by the SG-SHRS system. The complete Raman spectral information of microplastics was obtained, and the peak assignment of Raman characteristic peaks of the four kinds of microplastics was analyzed. By comparing the test results with a commercial dispersion spectrometer, it has been proven that the SG-SHRS system has the advantages of high spectral resolution, wide spectral range, and high SNR, and has good application prospects in the field of microplastic detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124499DOI Listing

Publication Analysis

Top Keywords

splicing grating
12
microplastic detection
12
sg-shrs system
12
grating spatial
8
spatial heterodyne
8
heterodyne raman
8
raman spectroscopy
8
detection technology
8
spectral range
8
spectral resolution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!