Solid waste challenges in both the tungsten and photovoltaic industries present significant barriers to achieving carbon neutrality. This study introduces an innovative strategy for the efficient extraction of valuable metals from hazardous tungsten leaching residue (W-residue) by leveraging photovoltaic silicon kerf waste (SKW) as a silicothermic reducing agent. W-residue contains 26.2% valuable metal oxides (WO, CoO, NbO, and TaO) and other refractory oxides (SiO, TiO, etc.), while micron-sized SKW contains 91.9% Si with a surface oxide layer. The impact of SKW addition on the silicothermic reduction process for valuable metal oxides in W-residue was investigated. Incorporating SKW and NaCO flux enables valuable metal oxides from W-residue to be effectively reduced and enriched as a valuable alloy phase, with unreduced refractory oxides forming a harmless slag phase during the NaO-SiO-TiO slag refining process. This process achieved an overall recovery yield of valuable metals of 91.7%, with individual recovery yields of W, Co, and Nb exceeding 90% with the addition of 8 wt.% SKW. This innovative approach not only achieves high-value recovery from W-residue and utilization of SKW but also minimizes environmental impact through an efficient and eco-friendly recycling pathway. The strategy contributes significantly to the establishment of a resource-efficient circular economy, wherein the recovered high-value alloy phase return to the tungsten supply chain, and the harmless slag phase become raw materials for microcrystalline glass production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.05.025 | DOI Listing |
Sci Rep
December 2024
Department of Mechanical Engineering, School of Science and Engineering, The American University in Cairo, AUC Avenue, 11835, New Cairo, Egypt.
This study investigates the ablation performance of Inconel 718, a nickel-based superalloy, and metal matrix polycrystalline diamond (MMPCD), a super composite, using a nano-second (ns) pulsed laser across a range of ablation conditions. Single trenches varying in energy fluence and scanning speeds were created, analyzing the experimental responses in terms of ablation rate and surface roughness. Using regression techniques, models were developed to understand these relationships.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.
The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.
View Article and Find Full Text PDFSmall Methods
December 2024
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China.
Controllably modulating the structure of transition-metal chalcogenides (TMCs) from 2D to 1D and tuning their electronic properties has drawn particular attention currently due to their remarkable properties and potential applications. In this work, by precisely controlling the chemical concentration of Te atoms, the transformation from the 2D honeycomb AgTe monolayer to high-quality and well-defined 1D AgTe nanowires on the Ag(111) substrate has been successfully achieved. The combination of scanning tunneling microscopy measurements and first-principles calculations has confirmed that the mechanism underlying the entire dimensional transformation lies in the directional movement of Ag atoms in the 2D AgTe monolayer regulated by the concentration of Te atoms.
View Article and Find Full Text PDFJACS Au
December 2024
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
The efficient activation and conversion of dinitrogen (N) represent a significant challenge in sustainable chemistry, offering potential pathways for synthesizing valuable nitrogen-containing compounds while reducing the environmental impact of traditional nitrogen fixation processes. While transition metal catalysts have been extensively studied for this purpose, actinide complexes have been less explored but have recently emerged as promising candidates due to their unique electronic properties and reactivity. This Perspective systematically examines the recent advances in N activation and conversion mediated by actinide complexes, with a particular focus on their synthesis, mechanistic insights, and catalytic capabilities.
View Article and Find Full Text PDFPrecis Chem
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
The interfacial proton transfer (PT) reaction on the metal oxide surface is an important step in many chemical processes including photoelectrocatalytic water splitting, dehydrogenation, and hydrogen storage. The investigation of the PT process, in terms of thermodynamics and kinetics, has received considerable attention, but the individual free energy barriers and solvent effects for different PT pathways on rutile oxide are still lacking. Here, by applying a combination of ab initio and deep potential molecular dynamics methods, we have studied interfacial PT mechanisms by selecting the rutile SnO(110)/HO interface as an example of an oxide with the characteristic of frequently interfacial PT processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!