Photodynamic therapy (PDT) is a promising modality for cancer treatment. However, limited tissue penetration of external radiation and complicated tumor microenvironments (TMEs) restrict the antitumor efficiency of PDT. Herein, we report an energy-storing DNA-based hydrogel, which enables tumor-selective PDT without external radiation and regulates TMEs to achieve boosted PDT-mediated tumor immunotherapy. The system is constructed with two ultralong single-stranded DNA chains, which programmed partial complementary sequences and repeated G-quadruplex forming AS1411 aptamer for photosensitizer loading via hydrophobic interactions and π-π stacking. Then, energy-storing persistent luminescent nanoparticles are incorporated to sensitize PDT selectively at tumor site without external irradiation, generating tumor antigen to agitate antitumor immune response. The system catalytically generates O to alleviate hypoxia and releases inhibitors to reverse the IDO-related immunosuppression, synergistically remodeling the TMEs. In the mouse model of breast cancer, this hydrogel shows a remarkable tumor suppression rate of 78.3 %. Our study represents a new paradigm of photodynamic immunotherapy against cancer by combining laser-free fashion and TMEs remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2024.122620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!