Extracellular vesicles (EVs) mediate the intercellular crosstalk by transferring functional cargoes. Recently, we have discovered that BaP/BPDE exposure suppresses trophoblast cell migration/invasion and induces miscarriage, which are also regulate by lncRNAs at intracelluar levels. However, the EVs-mediated intercellular regulatory mechanisms are completely unexplored. Specifically, whether EVs might transfer BPDE-induced toxic lncRNA to fresh recipient trophoblast cells and suppress their migration/invasion to further induce miscarriage is completely unknown. In this study, we find that BPDE exposure up-regulates a novel lnc-HZ11, which suppresses EGR1/NF-κB/CXCL12 pathway and migration/invasion of trophoblast cells. Intercellular studies show that EV-HZ11 (lnc-HZ11 in EVs), which is highly expressed in BPDE-exposed donor cells, suppresses EGR1/NF-κB/CXCL12 pathway and migration/invasion in recipient cells by transferring lnc-HZ11 through EVs. Analysis of villous tissues collected from UM (unexplained miscarriage) patients and HC (healthy control) group shows that the levels of BPDE-DNA adducts, lnc-HZ11 or EV-lnc-HZ11, and EGR1/NF-κB/CXCL12 pathway are all associated with miscarriage. Mouse assays show that BaP exposure up-regulates the levels of lnc-Hz11 or EV-Hz11, suppresses Egr1/Nf-κb/Cxcl12 pathway, and eventually induces miscarriage. Knockdown of lnc-Hz11 by injecting EV-AS-Hz11 could effectively alleviate miscarriage in BaP-exposed mice. Furthermore, EV-HZ11 in serum samples could well predict the risk of miscarriage. Collectively, this study not only discovers EVs-HZ11-mediated intercellular mechanisms that BaP/BPDE suppresses trophoblast cell migration/invasion and induces miscarriage but also provides new approach for treatment against unexplained miscarriage through EV-HZ11.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2024.108750DOI Listing

Publication Analysis

Top Keywords

egr1/nf-κb/cxcl12 pathway
16
trophoblast cell
12
cell migration/invasion
12
migration/invasion induces
12
unexplained miscarriage
12
induces miscarriage
12
suppresses egr1/nf-κb/cxcl12
12
miscarriage
10
bap/bpde suppresses
8
novel lnc-hz11
8

Similar Publications

Rationale: Coronary artery plaques often develop in regions subjected to disturbed shear stress (DSS), yet the mechanisms underlying this phenomenon remain poorly understood. Our study aimed to elucidate the unknown role of MAPK6 in shear stress and plaque formation.

Methods: In vitro and in vivo experiments, RNA-seq, CO-IP and proteomic analysis, combined with single-cell RNA-seq datasets were used to reveal the upstream and downstream mechanisms involved.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) mediate the intercellular crosstalk by transferring functional cargoes. Recently, we have discovered that BaP/BPDE exposure suppresses trophoblast cell migration/invasion and induces miscarriage, which are also regulate by lncRNAs at intracelluar levels. However, the EVs-mediated intercellular regulatory mechanisms are completely unexplored.

View Article and Find Full Text PDF

To screen and analyze the differentially-expressed genes (DEGs) in primary hepatocellular carcinoma tissues and adjacent tissues using bioinformatics methods to explore the molecular mechanism of the occurrence and prognosis of primary hepatocellular carcinoma. GSE76427 data set was collected through GEO database, and DEGs were identified using GEO2R online analysis. Go and KEGG databases were used for enrichment and functional annotation of DEGs.

View Article and Find Full Text PDF

Growth Factor-like Gene Regulation Is Separable from Survival and Maturation in Antibody-Secreting Cells.

J Immunol

February 2019

Section of Experimental Haematology, Leeds Institute of Medical Research, St. James's University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom;

Recurrent mutational activation of the MAP kinase pathway in plasma cell myeloma implicates growth factor-like signaling responses in the biology of Ab-secreting cells (ASCs). Physiological ASCs survive in niche microenvironments, but how niche signals are propagated and integrated is poorly understood. In this study, we dissect such a response in human ASCs using an in vitro model.

View Article and Find Full Text PDF

Background: LL-37 is a naturally occurring antimicrobial peptide found in the wound bed and assists wound repair. No published study has characterized the role of LL-37 in the function(s) of human mesenchymal stem cells (MSCs). This study investigated the functions of adipose-derived stromal/stem cells (ASCs) activated by LL-37 by performing both in vitro assays with cultured cells and in vivo assays with C57BL/6 mice with hair loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!