In recent years, biofuel production has attracted considerable attention, especially given the increasing worldwide demand for energy and emissions of greenhouse gases that threaten this planet. In this case, one possible solution is to convert biomass into green and sustainable biofuel, which can enhance the bioeconomy and contribute to sustainable economic development goals. Due to being in large quantities and containing high organic content, various biomass sources such as food waste, textile waste, microalgal waste, agricultural waste and sewage sludge have gained significant attention for biofuel production. Also, biofuel production technologies, including thermochemical processing, anaerobic digestion, fermentation and bioelectrochemical systems, have been extensively reported, which can achieve waste valorization through producing biofuels and re-utilizing wastes. Nevertheless, the commercial feasibility of biofuel production is still being determined, and it is unclear whether biofuel can compete equally with other existing fuels in the market. The concept of a circular economy in biofuel production can promote the environmentally friendly and sustainable valorization of biomass waste. This review comprehensively discusses the state-of-the-art production of biofuel from various biomass sources and the bioeconomy perspectives associated with it. Biofuel production is evaluated within the framework of the bioeconomy. Further perspectives on possible integration approaches to maximizing waste utilization for biofuel production are discussed, and what this could mean for the circular economy. More research related to pretreatment and machine learning of biofuel production should be conducted to optimize the biofuel production process, increase the biofuel yield and make the biofuel prices competitive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.172863 | DOI Listing |
Environ Sci Pollut Res Int
December 2024
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil. Electronic address:
Lignocellulosic waste, like corn stover (CS), is widely produced and serves as a key feedstock for biofuels and biochemicals. Semi-continuous subcritical water hydrolysis (SWH) is an eco-friendly method that breaks down cellulose and hemicellulose bonds. To boost fermentable sugar (FS) yields, steam explosion (SE) pretreatment was tested on CS, achieving a cellulose content of 74.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India.
The present study reports the ability of a fungal isolate DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS for identifying degradation products at different time intervals (10, 20, 30, and 40 days). The optimal degradation of alkali lignin (AL) was achieved at 0.
View Article and Find Full Text PDFMar Drugs
December 2024
National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea.
is well known for its potential for biofuel production due to its high lipid content. Numerous omics and biochemical studies have explored the overall molecular mechanisms underlying the responses of sp. to nutrient availability, primarily focusing on lipid metabolism.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Marine Laboratory, Duke University, Beaufort, North Carolina, USA.
The microalga is an important organism for algae-based biocommodity production of food, feed, and fuel, among other products. Using PacBio Revio, we sequenced, assembled, and annotated a 26.41 Mbp C018 genome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!