Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Utilizing functional magnetic resonance imaging (fMRI) to model functional brain networks (FBNs) is increasingly prominent in attention-deficit/hyperactivity disorder (ADHD) research, revealing neural impact and mechanisms through the exploration of activated brain regions. However, current FBNs-based methods face two major challenges. The primary challenge stems from the limitations of existing modeling methods in accurately capturing both regional correlations and long-distance dependencies (LDDs) within the dynamic brain, thereby affecting the diagnostic accuracy of FBNs as biomarkers. Additionally, limited sample size and class imbalance also pose a challenge to the learning performance of the model. To address the issues, we propose an automated diagnostic framework, which integrates modeling, multimodal fusion, and classification into a unified process. It aims to extract representative FBNs and efficiently incorporate domain knowledge to guide ADHD classification. Our work mainly includes three-fold: 1) A multi-head attention-based region-enhancement module (MAREM) is designed to simultaneously capture regional correlations and LDDs across the entire sequence of brain activity, which facilitates the construction of representative FBNs. 2) The multimodal supplementary learning module (MSLM) is proposed to integrate domain knowledge from phenotype data with FBNs from neuroimaging data, achieving information complementarity and alleviating the problems of insufficient medical data and unbalanced sample categories. 3) An ADHD automatic diagnosis framework guided by FBNs and domain knowledge (ADF-FAD) is proposed to help doctors make more accurate decisions, which is applied to the ADHD-200 dataset to confirm its effectiveness. The results indicate that the FBNs extracted by MAREM perform well in modeling and classification. After with MSLM, the model achieves accuracy of 92.4%, 74.4%, and 80% at NYU, PU, and KKI, respectively, demonstrating its ability to effectively capture crucial information related to ADHD diagnosis. Codes are available at https://github.com/zhuimengxuebao/ADF-FAD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.108611 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!