Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Combat sports, encompassing a range of activities from striking and grappling to mixed and weapon-based disciplines, have witnessed a surge in popularity worldwide. These sports are demanding, requiring athletes to harness energy from different metabolic pathways to perform short, high-intensity activities interspersed with periods of lower intensity. While it is established that the anaerobic alactic (ATP-PC) and anaerobic lactic systems are pivotal for high-intensity training sessions typical in combat sports, the precise contribution of these systems, particularly in varied training modalities such as single (SMT) and intermittent (IST) forms of the 30-second Wingate test, remains inadequately explored. This study aims at comparing performance outputs, physiological responses and gender differences during the SMT and IST forms of the 30-second Wingate test. Thirty-three highly trained combat sports athletes (17 women, 16 men; 10 boxing, 8 wrestling, 8 taekwondo and 7 karate) randomly performed SMT and IST. The IST consisted of three 10-second all-out attempts separated by 30 seconds of passive recovery, whereas the SMT was a single 30-second maximal effort. Resting, exercise and post-exercise oxygen uptake and peak blood lactate value were used to determine the metabolic energy demands via the PCr-LA-O2 method. The findings showed that total metabolic energy expenditure (TEE), ATP-PCr system contribution and the output of mechanical variables were higher in the IST than in the SMT form (all p<0.001). In contrast, the contribution of glycolytic and oxidative systems was higher in the SMT form (all p<0.001). However, exercise form and gender interaction were not significant (p>0.05). In combat sports, performance is not only determined by physiological and technical skills but also by metabolic energy input and efficiency. Therefore, our results can provide a comparison regarding the effects of exercise type and gender on metabolic energy metabolism to design the training of combat sports athletes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125558 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303888 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!