Photodynamic therapy using talaporfin sodium for non-totally resectable malignant glioma.

Photodiagnosis Photodyn Ther

Department of Neurosurgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-023, Japan.

Published: February 2024

AI Article Synopsis

  • Intraoperative photodynamic therapy (PDT) using talaporfin sodium is effective for local tumor control in malignant glioma, but its efficacy for cases that cannot be fully resected is unclear.
  • A study involving 18 patients with malignant glioma found some early reduction in residual tumors post-surgery after PDT; however, most patients still experienced recurrence, with distant progression seen in many.
  • The findings suggest that while PDT may slightly improve local tumor control in non-totally resectable malignant gliomas, it does not significantly prevent recurrence or improve overall survival rates.

Article Abstract

Background: For malignant glioma, intraoperative photodynamic therapy (PDT) using talaporfin sodium is a powerful tool for local tumor control, when gross total removal is performed. However, the efficacy of PDT for non-totally resectable malignant glioma has not been clearly confirmed. Therefore, the purpose of this study was to clarify the usefulness of PDT using talaporfin sodium for non-totally resectable malignant glioma.

Methods: Eighteen patients with malignant glioma (16 new onset, 2 recurrent) in whom gross total removal was judged to be difficult from the images obtained before surgery were evaluated. Fifteen patients had glioblastoma (14 newly diagnosed, 1 recurrent), and 3 patients had anaplastic oligodendroglioma (2 newly diagnosed, 1 recurrent). The whole resection cavity was subjected to PDT during the surgery. For newly diagnosed glioblastoma, postoperative therapy involved the combined use of radiation and temozolomide. Bevacizumab treatment was also started at an early stage after surgery.

Results: In some patients, reduction of the residual tumor was observed at an early stage of chemoradiotherapy after the surgery, suggesting the positive effect of PDT. Recurrence occurred in 15 of the 18 patients during the course of treatment. Distant recurrence occurred in 8 of these 15 patients, despite good local tumor control. In the 14 patients with newly diagnosed glioblastoma, the median progression-free survival was almost 10.5 months, and the median overall survival was almost 16.9 months.

Conclusions: PDT for malignant glioma is expected to slightly improve local tumor control for non-totally resectable lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2023.103869DOI Listing

Publication Analysis

Top Keywords

malignant glioma
20
non-totally resectable
16
newly diagnosed
16
talaporfin sodium
12
resectable malignant
12
local tumor
12
tumor control
12
photodynamic therapy
8
sodium non-totally
8
pdt talaporfin
8

Similar Publications

Non-enhancing margin and pial invasion in MRI can predict IDH status in glioma patients.

World Neurosurg

December 2024

Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China.

Background: The presence of isocitrate dehydrogenase (IDH) mutations and 1p/19q codeletion significantly influences the diagnosis and prognosis of patients with lower-grade gliomas (LGGs). The ability to predict these molecular signatures preoperatively can inform surgical strategies. This study sought to establish an interpretable imaging feature set for predicting molecular signatures and overall survival in LGGs.

View Article and Find Full Text PDF

The phosphodiesterase-4 inhibitor Zl-n-91 suppresses glioblastoma growth via EGR1/PTEN/AKT pathway.

Eur J Pharmacol

December 2024

The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China. Electronic address:

Glioblastoma multiforme (GBM) is a highly heterogeneous and aggressive brain tumor, which presents significant challenges for treatment in clinical settings. Phosphodiesterase 4 (PDE4) inhibitors can prevent the degradation of cAMP and have been used as a potential targeted therapeutic approach for different cancer types. However, its clinical use is restricted by the side effects such as nausea and vomiting.

View Article and Find Full Text PDF

PTEN loss in glioma cell lines leads to increased extracellular vesicle biogenesis and PD-L1 cargo in a PI3K-dependent manner.

J Biol Chem

December 2024

Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA. Electronic address:

Phosphatase and Tensin Homologue (PTEN) is one of the most frequently lost tumor suppressors in cancer and the predominant negative regulator of the PI3K/AKT signaling axis. A growing body of evidence has highlighted the loss of PTEN with immuno-modulatory functions including the upregulation of the programmed death ligand-1 (PD-L1), an altered tumor derived secretome that drives an immunosuppressive tumor immune microenvironment (TIME), and resistance to certain immunotherapies. Given their roles in immunosuppression and tumor growth, we examined whether the loss of PTEN would impact the biogenesis, cargo, and function of extracellular vesicles (EVs) in the context of the anti-tumor associated cytokine interferon-γ (IFN-γ).

View Article and Find Full Text PDF

Exosomes, minute vesicles originating from diverse cell types, exhibit considerable potential as carriers for drug delivery in glioma therapy. These naturally occurring nanocarriers facilitate the transfer of proteins, RNAs, and lipids between cells, offering advantages such as biocompatibility, efficient cellular absorption, and the capability to traverse the blood-brain barrier (BBB). In the realm of cancer, particularly gliomas, exosomes play pivotal roles in modulating tumor growth, regulating immunity, and combating drug resistance.

View Article and Find Full Text PDF

Background: Selinexor is a selective inhibitor of exportin-1 (XPO1), a key mediator of the nucleocytoplasmic transport for molecules critical to tumor cell survival. Selinexor's lethality is generally associated with the induction of apoptosis, and in some cases, with autophagy-induced apoptosis. We performed this study to determine Selinexor's action in glioblastoma (GBM) cells, which are notoriously resistant to apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!