Titanium has been proposed as a mesh material for guided bone regeneration (GBR) since the 1990s. To overcome difficulties in shaping and adapting meshes to the defect, digital techniques were introduced to digitally print meshes capable of fitting the bone perfectly, reproduced through the patient's CT scan. Five patients were included in this case series, and their CBCT data were acquired and sent to the producer of the titanium meshes. 3D regenerative surgery was performed with titanium meshes and a mix of demineralized bovine bone matrix (DBBM) and autogenous bone (1:1 ratio). Radiographic measures were evaluated on paraxial sections of the CBCT through a dedicated software. When possible, regenerated bone samples were obtained at implant insertion. Four out of five regenerated areas healed without local or systemic complications. One mesh was removed after 2 months and 2 weeks due to exposure. The mean vertical bone gain was 4.3 ± 1.5 mm (range: 2.5 to 7 mm). Two histologic samples were obtained. In sample 1, bone tissue area and graft material area were 44.4% and 12.5%, respectively; in sample 2, the same parameters were 15.6% and 16.9%, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11607/prd.6558 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!