Two-dimensional ice-like water adlayers on a mica surface with and without a graphene coating under ambient conditions.

Nanoscale

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Published: June 2024

Water tends to wet all hydrophilic surfaces under ambient conditions, and the first water adlayers on solids are important for a broad range of physicochemical phenomena and technological processes, including corrosion, wetting, lubrication, anti-icing, catalysis, and electrochemistry. Unfortunately, challenges in characterizing the first water adlayer in the laboratory have hampered molecular-level understanding of the contact water structure. Herein, we present the first molecular dynamics simulation evidence of a previously unreported ice-like adlayer structure (named as Ice-AL-II) on a prototype mica surface under ambient conditions. Calculation showed that the newly identified Ice-AL-II structure is more stable than the widely recognized ice-adlayer structure on mica surfaces (named as Ice-AL-I). Ice-AL-II exhibited a face-centered corner-cut tetragon (or a face-centered irregular pentagon) pattern of a hydrogen-bonded network. The center of the corner-cut tetragon was occupied by either a K cation or a water molecule with two H atoms pinned by the mica (100) double hydrogen bonds. Our simulation also suggested that bilayer Ice-AL-II favors AA stacking rather than AB stacking. Interestingly, when a graphene sheet was coated on top of the ice-like adlayer, the stability of Ice-AL-II was further enhanced. In contrast, due to its strongly puckered structure, the Ice-AL-I structure could be crushed into a near-Ice-AL-II structure by the graphene coating. Ice-AL-II is thus proposed as a promising candidate for the ice-like structure on a mica surface detected by scanning polarization force microscopy and by atomic force microscopy between a graphene coating and a mica surface.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr00748dDOI Listing

Publication Analysis

Top Keywords

mica surface
16
graphene coating
12
ambient conditions
12
water adlayers
8
conditions water
8
structure
8
ice-like adlayer
8
structure mica
8
corner-cut tetragon
8
force microscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!