Introduction: Knee osteotomies are effective procedures to treat different deformities and to redistribute the load at the joint level, reducing the risk of wear and, consequently, the need for invasive procedures. Particularly, knee osteotomies are effective in treating early arthritis related to knee deformities in young and active patients with high functional demands, with excellent long-term results. Precise mathematical calculations are imperative during the preoperative phase to achieve tailored and accurate corrections for each patient and avoid complications, but sometimes those formulas are challenging to comprehend and apply.
Methods: Four specific questions regarding controversial topics (planning methods, patellar height, tibial slope, and limb length variation) were formulated. An electronic search was performed on PubMed and Cochrane Library to find articles containing detailed mathematical or trigonometrical explanations. A team of orthopedic surgeons and an engineer summarized the available Literature and mathematical rules, with a final clear mathematical explanation given by the engineer. Wherever the explanation was not available in Literature, it was postulated by the same engineer.
Results: After the exclusion process, five studies were analyzed. For three questions, no studies were found that provided mathematical analyses or explanations. Through independent calculations, it was demonstrated why Dugdale's method underestimates the correction angle compared to Miniaci's method, and it was shown that the variation in patellar height after osteotomy can be predicted using simple formulas. The five included studies examine postoperative variations in limb length and tibial slope, providing formulas applicable in preoperative planning. New formulas were independently computed, using the planned correction angle and preoperatively obtained measurements to predict the studied variations.
Conclusions: There is a strict connection among surgery, planning, and mathematics formulas in knee osteotomies. The aim of this study was to analyze the current literature and provide mathematical and trigonometric explanations to important controversial topics in knee osteotomies. Simple and easy applicable formulas are provided to enhance the accuracy and outcomes of this surgical procedure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564203 | PMC |
http://dx.doi.org/10.1007/s00402-024-05366-7 | DOI Listing |
J Knee Surg
January 2025
Orthopedics, Seoul National University Bundang Hospital, Seongnam, Korea (the Republic of).
Categorization of alignment into phenotypes can be useful for predicting and analyzing postoperative alignment changes after opening-wedge high tibial osteotomy (OWHTO). The purposes of this study were (1) to develop a machine learning model for the predicting the Coronal Plane Alignment of the Knee (CPAK) phenotypes of final alignment after OWHTO, and (2) to analyze predictive factors for final alignment phenotypes. Data were retrospectively collected from 163 knees that underwent OWHTO between March 2014 and December 2019.
View Article and Find Full Text PDFHigh tibial osteotomy (HTO) is a widely used procedure for delaying knee arthroplasty, correcting alignment, and relieving symptoms in patients with knee osteoarthritis. Recently, proximal fibular osteotomy (PFO) has emerged as a less invasive and more cost-effective alternative. This study compares the outcomes of HTO and PFO to evaluate whether PFO can deliver results comparable to HTO in similar patient populations.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois, USA.
Background: Timely recognition and addressing of concomitant cartilage damage at the time of meniscal allograft transplantation (MAT) is critical to warrant future success. However, there remains a scarcity of data comparing outcomes between MAT with and without cartilage procedures.
Purpose: To compare patient-reported outcomes and rates of complications, failures, reoperations, and graft survivorship after MAT with concomitant cartilage procedures (MAT/Cart) and MAT without (MAT/NoCart).
J Orthop Translat
January 2025
Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 6F Biomedical Technology Building, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 23564, Taiwan.
Background And Objective: Osteoarthritis is a widespread and debilitating condition, particularly affecting the medial compartment of knee joint due to varus knee deformities. Medial opening wedge high tibial osteotomy (MOWHTO) has emerged as an effective treatment, but it comes with challenges like fractures, correction loss, and nonunion, leading to unsatisfactory results in up to 26 % of patients. In response, our study explores the potential of a bioabsorbable magnesium-based bulk metallic glass composite (MgZnCa BMGC) enriched with molybdenum particles as an innovative solution for MOWHTO.
View Article and Find Full Text PDFPurpose: Anterior tibial closing wedge osteotomy (ATCWO) has been shown to significantly reduce failure rates of revision anterior cruciate ligament (ACL) reconstructions in patients with a posterior tibial slope (PTS) ≥12°. Recent findings suggest a slight but significant reduction of the medial proximal tibial angle (MPTA) resulting in a varus knee where the sagittal osteotomy plane is based on a total of two guide wires defining the osteotomy wedge without respecting the frontal plane. We hypothesize that the placement of a total of four guide wires intraoperatively can reduce the influence on the MPTA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!