Carbon dioxide capture and utilization is a strategic technology for moving away from fossil-C. The conversion of CO into fuels demands energy and hydrogen that cannot be sourced from fossil-C. Co-processing of CO and water under solar irradiation will have a key role in the long-term for carbon-recycling and energy products production. This article discusses the synthesis, characterization and application of the two-phase composite photocatalyst, InO@g-CN, formed by thermal condensation of melamine in the presence of indium(III)nitrate. The composite exhibits a n,n-heterojunction between two n-type semiconductors, g-CN and InO, leading to a more efficient charge separation. The composite has a flat band potential enabling it to effectively catalyze the reduction of CO in the gas phase to produce CO, CH and CHOH. While the composite's overall photocatalytic efficiency is comparable to that of neat g-CN, its ability to promote multielectron-transfer and Proton Coupled to Electron Transfer (PCET) suggests that there is a potential for further optimization of its properties. The use of labelled CO has allowed us to clearly exclude that the reduced species are derived from the photocatalyst decomposition or the degradation of contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202400661 | DOI Listing |
ChemSusChem
January 2025
Harbin University of Science and Technology, School of Electrical and Electronic Engineering, CHINA.
In the pursuit of high-energy-density lithium metal batteries (LMBs), the development of stable solid electrolyte interphase (SEI) is critical to address issues such as lithium dendrite growth and low Coulombic efficiency. Herein, we propose a facile strategy for the in-situ fabrication of a LiCl-rich artificial SEI layer on Li surfaces through reaction of MoCl5 with Li (Li@MoCl5). The resulting artificial SEI significantly enhances the uniformity of Li deposition, effectively suppresses dendrite formation, and improves electrochemical performance.
View Article and Find Full Text PDFBiotechnol J
January 2025
Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.
Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells.
View Article and Find Full Text PDFChemSusChem
January 2025
CSIR Central Glass & Ceramic Research Institute, EMDD, 196 Raja S C Mullick Road, 700032, Kolkata, INDIA.
The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.
View Article and Find Full Text PDFSci Rep
January 2025
Graduate Course in Medicine (Pathological Anatomy), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.
View Article and Find Full Text PDFSci Rep
January 2025
School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
Lighting systems account for a significant proportion of energy consumption in buildings. Therefore, energy conservation within these systems can greatly enhance overall building energy efficiency. This study proposes a control strategy for LED lamps by adjusting lighting intensity and improving the performance of electric luminaires.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!