During the natural aging process, frailty is often associated with abnormal muscular performance. Although inter-individual differences exit, in most elderly the tissue mass and physiological functionality of voluntary muscles drastically decreases. In order to study age-related contractile decline, animal model research is of central importance in the field of biogerontology. Here we have analyzed wild type mouse muscle to establish a proteomic map of crude tissue extracts. Proteomics is an advanced and large-scale biochemical method that attempts to identify all accessible proteins in a given biological sample. It is a technology-driven approach that uses mass spectrometry for the characterization of individual protein species. Total protein extracts were used in this study in order to minimize the potential introduction of artefacts due to excess subcellular fractionation procedures. In this report, the proteomic survey of aged muscles has focused on organellar marker proteins, as well as proteins that are involved in cellular signaling, the regulation of ion homeostasis, bioenergetic metabolism and molecular chaperoning. Hence, this study has establish a proteomic reference map of a highly suitable model system for future aging research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264233 | PMC |
http://dx.doi.org/10.4081/ejtm.2024.12565 | DOI Listing |
Forensic Sci Int Genet
December 2024
Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China. Electronic address:
DNA methylation at age-related CpG (AR-CpG) sites holds significant promise for forensic age estimation. However, somatic models perform poorly in semen due to unique methylation dynamics during spermatogenesis, and current studies are constrained by the limited coverage of methylation microarrays. This study aimed to identify novel semen-specific AR-CpG sites using double-enzyme reduced representation bisulfite sequencing (dRRBS) and validate these markers, alongside previously reported sites and neighboring CpGs, using bisulfite amplicon sequencing (BSAS) to develop robust age estimation models.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
Background: Vascular dysfunction, blood-brain barrier (BBB) dysregulation, and neuroinflammation are thought to participate in Alzheimer`s disease (AD) pathogenesis, though the mechanism is poorly understood. Among pathways of interest, AD pathology appears to affect vascular endothelial growth factor-A (VEGFA) signaling in a bidirectional manner. Higher VEGF levels are thought to have a protective role and slow cognitive decline.
View Article and Find Full Text PDFBackground: Neuropathologic inclusions formed by hyperphosphorylated protein tau in the brain are a hallmark of Alzheimer's disease and other human neurodegenerative disorders commonly referred to as tauopathies. Tau lesions differ in their disease-specific morphological presentations, affected cell type, subcellular compartments and tau isoforms present in the inclusions. In addition, tau filaments isolated from different tauopathies have distinct fibrillar structures that potentially underlie the morphological diversity of tau lesions.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins University, Baltimore, MD, USA.
Background: By 2050 the number of Alzheimer's Disease (AD) patients is projected to exceed 150 million worldwide. AD is an incurable, insufficiently understood, and devastating neurodegenerative disease, with high patient heterogeneity in terms of progression, clinical manifestation (including neuropsychiatric symptoms, NPS) and, importantly, responsiveness to treatment options.[1] In the last 20 years, 98% of clinical trials for AD have failed, highlighting the urgent need to drastically change pre-clinical research to develop better predictors of drug safety and effectiveness.
View Article and Find Full Text PDFBackground: Approximately 85% of individuals living with MCI or ADRD experience one or more neuropsychiatric symptoms (NPS), referred to as ADRD-NPS. They include depression, anxiety, irritability, apathy, agitation, delusions, hallucinations, and sleep disturbances. ADRD-NPS are associated with greater functional impairment, higher caregiver burden, and earlier institutionalization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!