Constructing and Evaluating Machine-Learned Interatomic Potentials for Li-Based Disordered Rocksalts.

J Chem Theory Comput

Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India.

Published: June 2024

Lithium-based disordered rocksalts (LDRs), which are an important class of positive electrode materials that can increase the energy density of current Li-ion batteries, represent a significantly complex chemical and configurational space for conventional density functional theory (DFT)-based high-throughput screening approaches. Notably, atom-centered machine-learned interatomic potentials (MLIPs) are a promising pathway to accurately model the potential energy surface of highly disordered chemical spaces, such as LDRs, where the performance of such MLIPs has not been rigorously explored yet. Here, we represent a comprehensive evaluation of the accuracy, transferability, and ease of training of five atom-centered MLIPs, including the artificial neural network potentials developed by the atomic energy network (AENET), the Gaussian approximation potential (GAP), the spectral neighbor analysis potential (SNAP) and its quadratic extension (qSNAP), and the moment tensor potential (MTP), in modeling a 11-component LDR chemical space. Specifically, we generate a DFT-calculated data set of 10,842 configurations of disordered LiTMO and TMO compositions, where TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and/or Cu. To provide a point-of-comparison on the performance of atom-centered MLIPs, we also trained the neural equivariant interatomic potential (NequIP) on a subset of our data. Importantly, we find AENET to be the best potential in terms of accuracy and transferability for energy predictions, while MTP is the best for atomic forces. While AENET is the fastest to train among the MLIPs considered at low number of epochs (300), the training time increases significantly as epochs increase (3300), with a corresponding reduction in training errors (∼60%). Note that AENET and GAP tend to overfit in small data sets, with the extent of overfitting reducing with larger data sets. Finally, we observe AENET to provide reasonable predictions of average Li-intercalation voltages in layered, single-TM LiTMO frameworks, compared to DFT (∼10% error on average). Our study should pave the way both for discovering novel disordered rocksalt electrodes and for modeling other configurationally complex systems, such as high-entropy ceramics and alloys.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00039DOI Listing

Publication Analysis

Top Keywords

machine-learned interatomic
8
interatomic potentials
8
disordered rocksalts
8
accuracy transferability
8
atom-centered mlips
8
data sets
8
potential
6
disordered
5
mlips
5
aenet
5

Similar Publications

The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.

View Article and Find Full Text PDF

Generating a dataset that is representative of the accessible configuration space of a molecular system is crucial for the robustness of machine-learned interatomic potentials. However, the complexity of molecular systems, characterized by intricate potential energy surfaces, with numerous local minima and energy barriers, presents a significant challenge. Traditional methods of data generation, such as random sampling or exhaustive exploration, are either intractable or may not capture rare, but highly informative configurations.

View Article and Find Full Text PDF
Article Synopsis
  • The authors present a new machine learning workflow designed to predict how defects affect the Raman response of 2D materials.
  • By integrating various techniques, including machine-learned potentials and a density of states method, they can simulate large systems with tens of thousands of atoms.
  • They validate their approach by applying it to isotopic graphene and defective hexagonal boron nitride, finding their predictions align well with experimental data, suggesting potential for further studies in solid-state physics.
View Article and Find Full Text PDF

Spectral operator representations.

NPJ Comput Mater

December 2024

Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Machine learning in atomistic materials science has grown to become a powerful tool, with most approaches focusing on atomic geometry, typically decomposed into local atomic environments. This approach, while well-suited for machine-learned interatomic potentials, is conceptually at odds with learning complex intrinsic properties of materials, often driven by spectral properties commonly represented in reciprocal space (e.g.

View Article and Find Full Text PDF

Deep eutectic solvents have recently gained significant attention as versatile and inexpensive materials with many desirable properties and a wide range of applications. In particular, their characteristics, similar to those of ionic liquids, make them a promising class of liquid electrolytes for electrochemical applications. In this study, we utilized a local equivariant neural network interatomic potential model to study a series of deep eutectic electrolytes based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) using molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!