Programmed death ligand 1 (PD-L1) is a co-inhibitory molecule expressed on the surface of various cell types and known for its suppressive effect on T cells through its interaction with PD-1. Neutrophils also express PD-L1, and its expression is elevated in specific situations; however, the immunobiological role of PD-L1 neutrophils has not been fully characterized. Here, we report that PD-L1-expressing neutrophils increased in methicillin-resistant (MRSA) infection are highly functional in bacterial elimination and supporting inflammatory resolution. The frequency of PD-L1 neutrophils was dramatically increased in MRSA-infected mice, and this population exhibited enhanced activity in bacterial elimination compared to PD-L1- neutrophils. The administration of PD-L1 monoclonal antibody did not impair PD-L1 neutrophil function, suggesting that PD-L1 expression itself does not influence neutrophil activity. However, PD-1/PD-L1 blockade significantly delayed liver inflammation resolution in MRSA-infected mice, as indicated by their increased plasma alanine transaminase (ALT) levels and frequencies of inflammatory leukocytes in the liver, implying that neutrophil PD-L1 suppresses the inflammatory response of these cells during the acute phase of MRSA infection. Our results reveal that elevated PD-L1 expression can be a marker for the enhanced anti-bacterial function of neutrophils. Moreover, PD-L1 neutrophils are an indispensable population attenuating inflammatory leukocyte activities, assisting in a smooth transition into the resolution phase in MRSA infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124513PMC
http://dx.doi.org/10.3390/pathogens13050401DOI Listing

Publication Analysis

Top Keywords

bacterial elimination
12
pd-l1 expression
12
pd-l1 neutrophils
12
mrsa infection
12
pd-l1
10
neutrophils
8
mrsa-infected mice
8
phase mrsa
8
neutrophils expressing
4
expressing programmed
4

Similar Publications

Competition among bacteria for carbohydrates is pivotal for colonization resistance (CR). However, the impact of Western-style diets on CR remains unclear. Here we show how the competition between Klebsiella oxytoca and Klebsiella pneumoniae is modulated by consuming one of three Western-style diets characterized by high-starch, high-sucrose, or high-fat/high-sucrose content.

View Article and Find Full Text PDF

Fangchinoline eliminates intracellular Salmonella by enhancing lysosomal function via the AMPK-mTORC1-TFEB axis.

J Adv Res

January 2025

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China. Electronic address:

Introduction: Salmonella, a foodborne zoonotic pathogen, is a significant cause of morbidity and mortality in animals and humans globally. With the prevalence of multidrug-resistant strains, Salmonellosis has become a formidable challenge. Host-directed therapy (HDT) has recently emerged as a promising anti-infective approach for treating intracellular bacterial infections.

View Article and Find Full Text PDF

A novel immobilized bacteria consortium enhanced remediation efficiency of PAHs in soil: Insights into key removal mechanism and main driving factor.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

The remediation of sites co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) poses challenges for efficient and ecofriendly restoration methods. In this study, three strains (Pseudomonas sp. PDC-1, Rhodococcus sp.

View Article and Find Full Text PDF

Removal of Ampicillin with Nitrifying Cultures in a SBR Reactor.

Appl Biochem Biotechnol

January 2025

Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico.

The presence of antibiotics in wastewater discharges significantly affects the environment, mainly due to the generation of bacterial populations with multiple antibiotic resistances. The cometabolic capacity of nitrifying sludge to simultaneously remove ammonium (NH) and emerging organic contaminants (EOCs), including antibiotics, has been reported. In the present study, the removal capacity of 50 mg ampicillin (AMP)/L by nitrifying cultures associated with biosorption and biotransformation processes was evaluated in a sequencing batch reactor (SBR) system.

View Article and Find Full Text PDF

Infections caused by persistent, drug-resistant bacteria pose significant challenges in inflammation treatment, often leading to severe morbidity and mortality. Herein, the photosensitizer rhodamine derivatives are selected as the light-trapping dye and the electron-rich substituent N-nitrosoaminophen as the nitric oxide (NO)-releasing component to develop a multifunctional (deep) red-light activatable NO photocage/photodynamic prodrug for efficient treatment of wounds and diabetic foot infections. The prodrug, RhB-NO-2 integrates antimicrobial photodynamic therapy (aPDT), NO sterilization, and NO-mediated anti-inflammatory properties within a small organic molecule and is capable of releasing NO and generating Reactive oxygen species (ROS) when exposed to (deep) red laser (660 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!