Red mud is an industrial solid waste rarely utilized and often disposed of in landfills, resulting in resource waste and environmental pollution. However, due to its high pH and abundance of iron and aluminum oxides and hydroxides, red mud has excellent adsorption properties which can effectively remove heavy metals through ion exchange, adsorption, and precipitation. Therefore, red mud is a valuable resource rather than a waste byproduct. In recent years, red mud has been increasingly studied for its potential in wastewater treatment and soil improvement. Red mud can effectively reduce the migration and impact of heavy metals in soils and water bodies. This paper reviews the research results from using red mud to mitigate cadmium pollution in water bodies and soils, discusses the environmental risks of red mud, and proposes key research directions for the future management of red mud in cadmium-contaminated environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125661PMC
http://dx.doi.org/10.3390/toxics12050347DOI Listing

Publication Analysis

Top Keywords

red mud
36
mud
9
red
8
resource waste
8
heavy metals
8
water bodies
8
applying red
4
mud cadmium
4
cadmium contamination
4
contamination remediation
4

Similar Publications

A Magnetic Photocatalytic Composite Derived from Waste Rice Noodle and Red Mud.

Nanomaterials (Basel)

December 2024

College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.

This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.

View Article and Find Full Text PDF

The increase in industrial waste generation presents a global problem that is a consequence of the needs of modern society. To achieve the goals of the EU Green Deal and to promote the concept of circular economy (CE), the valorization of industrial residues as secondary raw materials offers a pathway to economic, environmental, energetic, and social sustainability. In this respect, Al-containing industrial residues from alumina processing (red mud), thermal power plants (fly ash and bottom ash), and metallurgy (slag), as well as other industries, present a valuable mineral resource which can be considered as secondary raw materials (SRMs) with the potential to be used in construction, supporting the concept of circular economy.

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

Removal, conversion and utilization technologies of alkali components in bayer red mud.

J Environ Manage

December 2024

China MCC22 Group Corporation Ltd., No.16 Xingfu Road, Fengrun District, Tangshan, Hebei, China.

Bayer red mud is a highly alkaline industrial solid waste generated during alumina production, and its massive discharge and stockpiling poses significant environmental risks. The strong alkalinity of red mud is a primary challenge limiting its effective utilization. This study systematically analyzes the composition and characteristics of alkaline components in red mud, emphasizing the roles of soluble free alkali and chemically bound alkali in regulating its alkalinity.

View Article and Find Full Text PDF

The high concentration of metal compounds found in red mud (RM) can serve as cost-effective raw materials for photo Fenton catalysts in the treatment of organic dye wastewater. In this study, RM was modified with bagasse using a hydrothermal method to prepare a photo-Fenton catalyst. The degradation efficiency of Rhodamine (RhB) solution under different conditions was evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!