AI Article Synopsis

  • PFAS, particularly PFOA and PFOS, are linked to negative health effects, prompting a study examining their serum levels across 13,887 participants from various NHANES cycles from 1999-2000 to 2017-2018.
  • Analysis revealed overall declining levels of PFOA and PFOS in adults, with higher concentrations found in men, smokers, and individuals with pre-existing health issues like CKD, CVD, and cancer.
  • The study indicated that those with diabetes and CKD experienced faster declines in PFOA, while faster reductions in PFOS were noted in individuals with diabetes, suggesting a connection between environmental chemicals and chronic disease trends.

Article Abstract

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are associated with adverse health effects. This study examined the trend of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) levels in individuals with and without pre-existing comorbidities. We analyzed the characteristics of 13,887 participants across nine U.S. NHANES cycles (1999-2000 to 2017-2018) and calculated the geometric mean (GM) of PFOA and PFOS levels, standardized by sex and age. A joinpoint regression model was used to analyze the temporal trends of serum PFOA and PFOS levels. We observed declining PFOA and PFOS serum levels among adults in NHANES from 1999-2000 to 2017-2018. Serum PFOA and PFOS concentrations were higher in men, smokers, and individuals with pre-existing CKD, hyperlipidemia, CVD, and cancer. We observed faster decline rates in PFOA levels among individuals with diabetes and CKD and faster decline rates in PFOS levels among individuals with diabetes and those without CKD. This study provided evidence of varying levels and changing trends of PFOA and PFOS between groups with and without established chronic disease, highlighting the role of environmental chemicals in the onset and development of chronic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11125848PMC
http://dx.doi.org/10.3390/toxics12050314DOI Listing

Publication Analysis

Top Keywords

pfoa pfos
20
pfos levels
16
levels individuals
12
perfluorooctanoic acid
8
perfluorooctane sulfonic
8
sulfonic acid
8
individuals pre-existing
8
1999-2000 2017-2018
8
serum pfoa
8
faster decline
8

Similar Publications

Mixed exposure to PFOA and PFOS induces oocyte apoptosis and subfertility in mice by activating the Hippo signaling pathway.

Reprod Toxicol

December 2024

Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are synthetic perfluorinated compounds known for their persistence in the environment and reproduction toxicity. PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have been identified in the follicular fluid of infertile women. However, the specific of PFOA and PFOS mixture on oocyte quality and female fertility remain unclear.

View Article and Find Full Text PDF

Per- and polyfluoroalkylated substances (PFAS) in the feathers and excreta of Gentoo penguins (Pygoscelis papua) from the Antarctic Peninsula.

Sci Total Environ

December 2024

Centro de Investigación para la Sustentabilidad (CIS-UNAB) & Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; Centro de Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Av. Alemania 281, Temuco, Chile.

Per- and polyfluoroalkyl substances (PFAS) exhibit widespread global distribution, extending to remote regions including Antarctica. Despite potential adverse effects on seabirds, PFAS exposure among Antarctic penguins remains poorly studied. We investigated the occurrence of 29 PFAS compounds in feathers and excreta of Gentoo penguins (Pygoscelis papua) from Fildes Bay, Antarctica.

View Article and Find Full Text PDF

Comprehensive analysis of transplacental transfer of environmental pollutants detected in paired maternal and cord serums.

J Hazard Mater

December 2024

Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan 430079, China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China. Electronic address:

Prenatal exposure to hazardous environmental pollutants is a critical global concern due to their confirmed presence in umbilical cord blood, indicating the ability of pollutants to cross the placental barrier and expose the fetus to harmful compounds. However, the transplacental transfer efficiencies (TTEs) of many pollutants remain underexplored. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantitatively analyze 91 environmental pollutants, including 13 bisphenols (BPs), 18 organophosphorus flame retardants (OPFRs), 7 brominated and other flame retardants (BFRs), 34 phthalates (PAEs), and 19 per- and polyfluoroalkyl substances (PFASs), in paired maternal and cord serums.

View Article and Find Full Text PDF

In the present study, two most commonly used Perfluoroalkyl substances (PFASs), namely perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), were determined in 45 tap water samples from the city of Isfahan (Iran) by dispersive liquid-liquid extraction (DLLME) and liquid chromatography-mass spectrophotometry (LC-MS) analysis. Risk assessment was also performed to determine the risk to human health. The mean concentration of PFOA was 38.

View Article and Find Full Text PDF

Cleaner cuts: Farmed fish and skin-off fillets are lower in per- and polyfluoroalkyl substances (PFAS).

Sci Total Environ

December 2024

Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME, United States; U.S. Geological Survey, Maine Cooperative Fish and Wildlife Research Unit, Orono, ME, United States.

The ubiquitous occurrence and persistence of per- and polyfluoroalkyl substances (PFAS) in all environmental matrices and biota poses significant health risks to humans. Fish consumption is one of the main pathways humans are exposed to PFAS, yet general patterns in factors influencing PFAS content in fish fillets remain unknown. We assembled information on PFAS content (total quantified PFAS, PFOS, PFOA, and others) in fish fillets to assess the effect of fish origin (marine, freshwater, wild, or farmed), fillet type (skin-on or skin-off), and lipid content on PFAS variation across environments at a global scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!