Over the past decades, the development of nanomaterials has played an important role in the most intriguing aspects of new technologies in several scientific fields, such as nanoelectronics, nanomedicine [...].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11124367 | PMC |
http://dx.doi.org/10.3390/nano14100893 | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.
The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
The advancement in materials chemistry promoted the growth of energy storage systems such as capacitors, supercapacitors and batteries. Covalent organic frameworks and nanomaterials have significantly improved the performance of various energy storage systems. Because of the unique properties of these materials, like high surface area, tunable architectures, and enhanced conductivity, researchers have developed effective and durable energy storage solutions for multiple applications.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
Retinal diseases can severely impair vision and even lead to blindness, posing significant threats to both physical and mental health. Physical retinal regenerative therapies are poised to revolutionize the treatment of various disorders associated with blindness. However, these therapies must overcome the challenges posed by the protective inner and outer blood‒retinal barriers.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, Tamil Nadu, 626126, India.
The novel coronavirus that caused the epidemic and pandemic resulting in the acute respiratory illness known as coronavirus disease 2019 (COVID-19) has plagued the world. This is unlike other coronavirus outbreaks that have occurred in the past, such as Middle East respiratory syndrome (MERS) or severe acute respiratory syndrome (SARS). COVID-19 has spread more quickly and posed special challenges due to the lack of appropriate treatments and vaccines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!