This study involved direct doping of InO into silicon carbide (SiC) powder, resulting in 8.0 at% In-doped SiC powder. Subsequently, heating at 500 °C was performed to form a target, followed by the utilization of electron beam (e-beam) technology to deposit the In-doped SiC thin films with the thickness of approximately 189.8 nm. The first breakthrough of this research was the successful deposition of using e-beam technology. The second breakthrough involved utilizing various tools to analyze the physical and electrical properties of In-doped SiC thin films. Hall effect measurement was used to measure the resistivity, mobility, and carrier concentration and confirm its n-type semiconductor nature. The uniform dispersion of In ions in SiC was as confirmed by electron microscopy energy-dispersive spectroscopy and secondary ion mass spectrometry analyses. The Tauc Plot method was employed to determine the Eg values of pure SiC and In-doped SiC thin films. Semiconductor parameter analyzer was used to measure the conductivity and the I-V characteristics of devices in In-doped SiC thin films. Furthermore, the third finding demonstrated that InO-doped SiC thin films exhibited remarkable current density. X-ray photoelectron spectroscopy and Gaussian-resolved spectra further confirmed a significant relationship between conductivity and oxygen vacancy concentration. Lastly, depositing these In-doped SiC thin films onto p-type silicon substrates etched with buffered oxide etchant resulted in the formation of heterojunction p-n junction. This junction exhibited the rectifying characteristics of a diode, with sample current values in the vicinity of 10 mA, breakdown voltage at approximately -5.23 V, and open-circuit voltage around 1.56 V. This underscores the potential of In-doped SiC thin films for various semiconductor devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123852 | PMC |
http://dx.doi.org/10.3390/nano14100881 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!