AI Article Synopsis

  • Researchers are working on advanced terahertz (THz) wave generation using innovative multi-quantum well (MQW) IMPATT diodes made from AlGaN/GaN materials.
  • They explored two diode types: junction-based and Schottky barrier structures, and introduced techniques like mesa etching and nitrogen ion implantation to improve performance and reliability.
  • Their findings indicate that the Schottky barrier design significantly enhances power output and efficiency, making their devices superior to existing THz sources and opening new possibilities for THz technology applications.

Article Abstract

In our pursuit of high-power terahertz (THz) wave generation, we propose innovative edge-terminated single-drift region (SDR) multi-quantum well (MQW) impact avalanche transit time (IMPATT) structures based on the AlGaN/GaN/AlGaN material system, with a fixed aluminum mole fraction of = 0.3. Two distinct MQW diode configurations, namely junction-based and Schottky barrier diode structures, were investigated for their THz potential. To enhance reverse breakdown characteristics, we propose employing mesa etching and nitrogen ion implantation for edge termination, mitigating issues related to premature and soft breakdown. The THz performance is comprehensively evaluated through steady-state and high-frequency characterizations using a self-consistent quantum drift-diffusion (SCQDD) model. Our proposed AlGaN/GaN/AlGaN MQW diodes, as well as GaN-based single-drift region (SDR) and 3C-SiC/Si/3C-SiC MQW-based double-drift region (DDR) IMPATT diodes, are simulated. The Schottky barrier in the proposed diodes significantly reduces device series resistance, enhancing peak continuous wave power output to approximately 300 mW and DC to THz conversion efficiency to nearly 13% at 1.0 THz. Noise performance analysis reveals that MQW structures within the avalanche zone mitigate noise and improve overall performance. Benchmarking against state-of-the-art THz sources establishes the superiority of our proposed THz sources, highlighting their potential for advancing THz technology and its applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11123759PMC
http://dx.doi.org/10.3390/nano14100873DOI Listing

Publication Analysis

Top Keywords

multi-quantum well
8
impact avalanche
8
avalanche transit
8
transit time
8
wave generation
8
thz
8
single-drift region
8
region sdr
8
schottky barrier
8
thz sources
8

Similar Publications

Design of Two-Dimensional Hybrid Perovskites with Giant Spin Splitting and Persistent Spin Textures.

J Am Chem Soc

December 2024

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.

Semiconductors with large energetic separation Δ of energy sub-bands with distinct spin expectation values (spin textures) represent a key target to enable control over spin transport and spin-optoelectronic properties. While the paradigmatic case of symmetry-dictated Rashba spin splitting and associated spin textures remains the most explored pathway toward designing future spin-transport-based quantum information technologies, controlling spin physics beyond the Rashba paradigm by accessing strategically targeted crystalline symmetries holds significant promise. In this paper, we show how breaking the traditional paradigm of octahedron-rotation based structure distortions in 2D organic-inorganic perovskites (2D-OIPs) can facilitate exceptionally large spin splittings (Δ > 400 meV) and spin textures with extremely short spin helix lengths ( ∼ 5 nm).

View Article and Find Full Text PDF

Over the last 30 years, group-IV semiconductors have been intensely investigated in the quest for a fundamental direct bandgap semiconductor that could yield the last missing piece of the Si Photonics toolbox: a continuous-wave Si-based laser. Along this path, it has been demonstrated that the electronic band structure of the GeSn/SiGeSn heterostructures can be tuned into a direct bandgap quantum structure providing optical gain for lasing. In this paper, we present a versatile electrically pumped, continuous-wave laser emitting at a near-infrared wavelength of 2.

View Article and Find Full Text PDF

Color-tunable micro-scale light-emitting diodes (Micro-LEDs) can achieve full-color display in a simple and low-cost way. In this paper, we demonstrate growth of three-dimensional (3D) inverted pyramid GaN on nano-patterned sapphire substrates (NPSS). By using the sputtered AlN nucleation layer, the uniformity of the inverted pyramid has been improved to a large extent.

View Article and Find Full Text PDF

III-nitride multi-quantum well (MQW) diodes can modulate the light emitted by another diode with the same MQW structure by varying the bias voltage owing to the spectral overlap between the electroluminescence spectrum and spectral responsivity curve of the MQW diodes. Here, we investigate bias-controlled modulation by monolithically integrating an optical transmitter, waveguide, electro-absorption modulator (EAM), and slot grating coupler on a silicon-based III-nitride platform using compatible fabrication processes. The modulated light is coupled into a fiber, which is direct to a photodiode for characterization.

View Article and Find Full Text PDF

Telecom-band multiwavelength vertical emitting quantum well nanowire laser arrays.

Light Sci Appl

September 2024

Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.

Highly integrated optoelectronic and photonic systems underpin the development of next-generation advanced optical and quantum communication technologies, which require compact, multiwavelength laser sources at the telecom band. Here, we report on-substrate vertical emitting lasing from ordered InGaAs/InP multi-quantum well core-shell nanowire array epitaxially grown on InP substrate by selective area epitaxy. To reduce optical loss and tailor the cavity mode, a new nanowire facet engineering approach has been developed to achieve controlled quantum well nanowire dimensions with uniform morphology and high crystal quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!