AI Article Synopsis

  • Echinocandin B and FR901379 are antifungal lipopeptides used to treat severe fungal infections, with modified fatty acid chains developed to reduce toxicity.
  • A new echinocandin E acylase (ECEA) was discovered from a Mariana Trench sediment sample, which helps to enhance the development of these antifungal compounds.
  • The findings highlight the potential of exploring deep-sea biodiversity for discovering new enzymes that can aid in developing therapeutics.

Article Abstract

Naturally occurring echinocandin B and FR901379 are potent antifungal lipopeptides featuring a cyclic hexapeptide nucleus and a fatty acid side chain. They are the parent compounds of echinocandin drugs for the treatment of severe fungal infections caused by the and species. To minimize hemolytic toxicity, the native fatty acid side chains in these drug molecules are replaced with designer acyl side chains. The deacylation of the -acyl side chain is, therefore, a crucial step for the development and manufacturing of echinocandin-type antibiotics. Echinocandin E (ECE) is a novel echinocandin congener with enhanced stability generated via the engineering of the biosynthetic machinery of echinocandin B (ECB). In the present study, we report the discovery of the first echinocandin E acylase (ECEA) using the enzyme similarity tool (EST) for enzymatic function mining across protein families. ECEA is derived from sp. SY1965 isolated from a sediment collected from the Mariana Trench. It was cloned and heterologously expressed in TK24. The resultant TKecea66 strain showed efficient cleavage activity of the acyl side chain of ECE, showing promising applications in the development of novel echinocandin-type therapeutics. Our results also provide a showcase for harnessing the essentially untapped biodiversity from the hadal ecosystems for the discovery of functional molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122479PMC
http://dx.doi.org/10.3390/md22050212DOI Listing

Publication Analysis

Top Keywords

side chain
12
echinocandin acylase
8
protein families
8
fatty acid
8
acid side
8
side chains
8
acyl side
8
echinocandin
7
side
5
hadal -derived
4

Similar Publications

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.

View Article and Find Full Text PDF

The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.

View Article and Find Full Text PDF

The discovery of novel anti-cancer drugs motivated us to synthesize a new series of triple 1,2,3-triazole-based arm scaffolds featuring distinct un functionalized alkyl and/or aryl side chains with possible anti-cancer action using the click chemistry approach under both conventional and green microwave irradiation (MWI) methods. The Cu(I) catalyzed cycloaddition reaction of targeted tris-alkyne with un functionalized aliphatic and aromatic azides has been adopted as an efficient approach for synthesizing the desired click adducts. Microwave irradiation improved the synthetic processes, resulting in higher yields and faster reaction times.

View Article and Find Full Text PDF

O-Methyldehydroserine, ΔSer(Me), is a non-standard α,β-dehydroamino acid, which occurs naturally in Cyrmenins with potential pharmaceutical application. The C-terminal part and the side chain of the ΔSer(Me) residue constitute the β-methoxyacrylate unit, responsible for antifungal activity of Cyrmenins. The short model, Ac-ΔSer(Me)-OMe, was analyzed considering the geometrical isomer Z () and E ().

View Article and Find Full Text PDF

Mapping O- and N-Glycosylation in Transmembrane and Interface Regions of Proteins: Insights from a Database Search Study.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.

Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!