Skin Tone Estimation under Diverse Lighting Conditions.

J Imaging

Department of E&E, Stellenbosch University, Stellenbosch 7602, South Africa.

Published: April 2024

Knowledge of a person's level of skin pigmentation, or so-called "skin tone", has proven to be an important building block in improving the performance and fairness of various applications that rely on computer vision. These include medical diagnosis of skin conditions, cosmetic and skincare support, and face recognition, especially for darker skin tones. However, the perception of skin tone, whether by the human eye or by an optoelectronic sensor, uses the reflection of light from the skin. The source of this light, or illumination, affects the skin tone that is perceived. This study aims to refine and assess a convolutional neural network-based skin tone estimation model that provides consistent accuracy across different skin tones under various lighting conditions. The 10-point Monk Skin Tone Scale was used to represent the skin tone spectrum. A dataset of 21,375 images was captured from volunteers across the pigmentation spectrum. Experimental results show that a regression model outperforms other models, with an estimated-to-target distance of 0.5. Using a threshold estimated-to-target skin tone distance of 2 for all lights results in average accuracy values of 85.45% and 97.16%. With the Monk Skin Tone Scale segmented into three groups, the lighter exhibits strong accuracy, the middle displays lower accuracy, and the dark falls between the two. The overall skin tone estimation achieves average error distances in the LAB space of 16.40±20.62.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11122461PMC
http://dx.doi.org/10.3390/jimaging10050109DOI Listing

Publication Analysis

Top Keywords

skin tone
36
skin
14
tone estimation
12
lighting conditions
8
skin tones
8
tone
8
monk skin
8
tone scale
8
estimation diverse
4
diverse lighting
4

Similar Publications

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Over the past ten years, there has been an increasing demand for reliable consumer wearables as users are inclined to monitor their health and fitness metrics in real-time, especially since the COVID-19 pandemic. Reflectance pulse oximeters in fitness trackers and smartwatches provide convenient, non-invasive SpO measurements but face challenges in achieving medical-grade accuracy, particularly due to difficulties in capturing physiological signals, which may be affected by skin pigmentation. Hence, this study sets out to investigate the influence of skin pigmentation, particularly in individuals with darker skin, on the accuracy and reliability of SpO measurement in consumer wearables that utilise reflectance pulse oximeters.

View Article and Find Full Text PDF

The effect of skin pigmentation on photoplethysmography and, specifically, pulse oximetry has recently received a significant amount of attention amongst researchers, especially since the COVID-19 pandemic. With most computational studies observing overestimation of arterial oxygen saturation (SpO) in individuals with darker skin, this study seeks to further investigate the root causes of these discrepancies. This study analysed intensity changes from Monte Carlo-simulated reflectance PPG signals across light, moderate, and dark skin types at oxygen saturations of 70% and 100% in MATLAB R2024a.

View Article and Find Full Text PDF

Vitiligo is a pigmentation disorder that impacts approximately 0.5% to 2% of the global population. Growing interest surrounds the comorbidities associated with vitiligo.

View Article and Find Full Text PDF

The landscape of available therapeutic options for treatment of genitourinary (GU) cancers is expanding dramatically. Many of these treatments have distinct, sometimes severe, skin toxicities including morbilliform, bullous, pustular, lichenoid, eczematous, psoriasiform, and palmoplantar eruptions. Pruritus and skin pigmentation changes have also been noted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!