Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High vertical jumping motion, which enables a humanoid robot to leap over obstacles, is a direct reflection of its extreme motion capabilities. This article proposes a single sequential kino-dynamic trajectory optimization method to solve the whole-body motion trajectory for high vertical jumping motion. The trajectory optimization process is decomposed into two sequential optimization parts: optimization computation of centroidal dynamics and coherent whole-body kinematics. Both optimization problems converge on the common variables (the center of mass, momentum, and foot position) using cost functions while allowing for some tolerance in the consistency of the foot position. Additionally, complementarity conditions and a pre-defined contact sequence are implemented to constrain the contact force and foot position during the launching and flight phases. The whole-body trajectory, including the launching and flight phases, can be efficiently solved by a single sequential optimization, which is an efficient solution for the vertical jumping motion. Finally, the whole-body trajectory generated by the proposed optimized method is demonstrated on a real humanoid robot platform, and a vertical jumping motion of 0.5 m in height (foot lifting distance) is achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11118027 | PMC |
http://dx.doi.org/10.3390/biomimetics9050274 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!