Characterization and Performance Analysis of Hydrolyzed versus Non-Hydrolyzed Poly(NVF-co-HEA) Hydrogels for Cosmetic Applications.

Gels

Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.

Published: May 2024

This study explores the synthesis and modification of poly(N-vinylformamide-co-N-hydroxyethyl acrylamide) (poly(NVF-co-HEA)) hydrogels for cosmetic applications. Poly(NVF-co-HEA) hydrogels were produced followed by an acid hydrolysis reaction to produce poly(NVF-co-VAm-co-HEA) hydrogels, introducing poly(vinyl amine) (PVAm) into the structure. This modification considerably alters the hydrogels' properties, yielding materials with over 96% water content, predominantly in the form of non-freezing or free water, which is beneficial in the uptake and release of hydrophilic species. The primary amine groups from inclusion of VAm also improved the mechanical properties, as evidenced by an 8-fold increase in Young's modulus. The hydrogels also possessed pH-responsive behavior, which was particularly noticeable under acidic and basic conditions, where a large decrease in water content was observed (40% to 75% reduction). Characterizing the hydrogels' release capabilities involved using organic dyes of different functional groups and sizes to examine the pH impact on release. The results indicated that hydrolyzed hydrogels interacted more effectively with charged species, highlighting their suitability for pH-responsive delivery. The release of cosmetic active ingredients was also demonstrated through the controlled release of Liquid Azelaicâ„¢, specifically potassium azeloyl diglycinate (PAD). Our findings reveal that the hydrolyzed hydrogels exhibit superior burst release, especially under alkaline conditions, suggesting their suitability for cosmetic applications where controlled, pH-responsive delivery of active ingredients is desired. Overall, this investigation highlights the potential of hydrolyzed poly(NVF-co-HEA) hydrogels in cosmetic applications. Their ability to combine high water content with mechanical integrity, along with their pH-responsive release ability, allows for use in cosmetic formulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11120761PMC
http://dx.doi.org/10.3390/gels10050311DOI Listing

Publication Analysis

Top Keywords

polynvf-co-hea hydrogels
16
cosmetic applications
16
hydrogels cosmetic
12
water content
12
hydrogels
8
hydrolyzed hydrogels
8
ph-responsive delivery
8
active ingredients
8
release
7
cosmetic
6

Similar Publications

This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.

View Article and Find Full Text PDF

Regulation of swelling behaviour while preserving bulk modulus in hydrogels surface grafting.

Soft Matter

January 2025

Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

This study presents a novel approach to control "linked property changes" in hydrogels. Specifically, we controlled the swelling behaviour without altering the bulk elastic modulus by grafting polymers selectively into the surface region of the gels, while varying the graft amount.

View Article and Find Full Text PDF

Recent efforts have focused on developing stimuli-responsive soft actuators that mimic the adaptive, complex, and reversible movements found in natural species. However, most hydrogel actuators are limited by their inability to combine wavelength-selectivity with reprogrammable shape changes, thereby reducing their degree of freedom in motion. To address this challenge, we present a novel strategy that integrates these capabilities by grafting fluorophores onto temperature-responsive hydrogels.

View Article and Find Full Text PDF

Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.

View Article and Find Full Text PDF

Design and Synthesis of Triazine-Based Hydrogel for Combined Targeted Doxorubicin Delivery and PI3K Inhibition.

ACS Biomater Sci Eng

January 2025

School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Melanoma, an aggressive skin cancer originating from melanocytes, presents substantial challenges due to its high metastatic potential and resistance to conventional therapies. Hydrogels, 3D networks of hydrophilic polymers with high water-retention capacities, offer significant promise for controlled drug delivery applications. In this study, we report the synthesis and characterization of hydrogelators based on the triazine molecular scaffold, which self-assemble into fibrous networks conducive to hydrogel formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!