The creation of polymer composite materials by compositing fillers into polymer materials is an effective method of improving the properties of polymer materials, and the development of new fillers and their novel composite methods is expected to lead to the creation of new polymer composite materials. In this study, we develop a new filler material made of low-molecular-weight gelators by applying a gelation process that simultaneously performs the swelling (gelation) of crosslinked polymer materials and the self-assembly of low-molecular-weight gelators into low-dimensional crystals in organic solvents within polymer materials. The gelation process of crosslinking rubber-based polymers using alkylhydrazides/toluene as the low-molecular-weight gelator allowed us to composite self-assembled sheet-like crystals of alkylhydrazides as fillers in polymeric materials, as suggested by various microscopic observations, including infrared absorption measurements, small-angle X-ray diffraction measurements and thermal analysis, microscopy, and infrared absorption measurements. Furthermore, tensile tests of the composite materials demonstrated that the presence of fillers improved both the Young's modulus and the tensile strength, as well as the elongation at yield. Additionally, heat treatment was shown to facilitate filler dispersion and enhance the mechanical properties. The findings demonstrate the potential of self-assembled sheet-like crystals of low-molecular-weight gelators as novel filler materials for polymers. The study's composite method utilizing gelators via gelation proved effective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11121615PMC
http://dx.doi.org/10.3390/gels10050298DOI Listing

Publication Analysis

Top Keywords

composite materials
16
polymer materials
16
low-molecular-weight gelators
12
materials
11
polymeric materials
8
creation polymer
8
polymer composite
8
gelation process
8
self-assembled sheet-like
8
sheet-like crystals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!